asymptotes of f(x)=(x^3-2x^2-3x)/(x-3)
|
asymptotes\:f(x)=\frac{x^{3}-2x^{2}-3x}{x-3}
|
domain of 5+(10+x)^{1/2}
|
domain\:5+(10+x)^{\frac{1}{2}}
|
range of (-5)/(2x+7)
|
range\:\frac{-5}{2x+7}
|
inverse of f(x)=2+sqrt(1+\sqrt{x-1)}
|
inverse\:f(x)=2+\sqrt{1+\sqrt{x-1}}
|
asymptotes of f(x)=((5x^2-3))/(x+2)
|
asymptotes\:f(x)=\frac{(5x^{2}-3)}{x+2}
|
asymptotes of f(x)=(5+2^x)/(1-2^x)
|
asymptotes\:f(x)=\frac{5+2^{x}}{1-2^{x}}
|
domain of f(x)= 1/(sqrt(x-3))
|
domain\:f(x)=\frac{1}{\sqrt{x-3}}
|
parallel y= 2/3 x
|
parallel\:y=\frac{2}{3}x
|
range of 13x^3+2x^2-12x-15
|
range\:13x^{3}+2x^{2}-12x-15
|
inverse of (x-5)^2-4
|
inverse\:(x-5)^{2}-4
|
asymptotes of f(x)= 3/(x^2-4)
|
asymptotes\:f(x)=\frac{3}{x^{2}-4}
|
parity f(x)=x^4+x^2
|
parity\:f(x)=x^{4}+x^{2}
|
domain of (sqrt(x))/(6x^2+5x-1)
|
domain\:\frac{\sqrt{x}}{6x^{2}+5x-1}
|
domain of y=sqrt(x-8)
|
domain\:y=\sqrt{x-8}
|
perpendicular 3x+12y=60\land (-7,5)
|
perpendicular\:3x+12y=60\land\:(-7,5)
|
asymptotes of f(x)=(8x^2+1)/(2x^2+5x-3)
|
asymptotes\:f(x)=\frac{8x^{2}+1}{2x^{2}+5x-3}
|
asymptotes of f(x)=((x-3)(x+4))/(x^2-4)
|
asymptotes\:f(x)=\frac{(x-3)(x+4)}{x^{2}-4}
|
domain of (x+2)*e^{1/x}
|
domain\:(x+2)\cdot\:e^{\frac{1}{x}}
|
inverse of f(x)=(x-3)^3+1
|
inverse\:f(x)=(x-3)^{3}+1
|
range of f(x)=x^2
|
range\:f(x)=x^{2}
|
inverse of f(x)=(5x-3)/(2x+5)
|
inverse\:f(x)=\frac{5x-3}{2x+5}
|
range of x^2+3
|
range\:x^{2}+3
|
domain of X^2+4
|
domain\:X^{2}+4
|
domain of f(x)=sqrt(x)+3
|
domain\:f(x)=\sqrt{x}+3
|
domain of (y^2+1)/(y^2-2y)
|
domain\:\frac{y^{2}+1}{y^{2}-2y}
|
symmetry y=-3x2+48x-195
|
symmetry\:y=-3x2+48x-195
|
domain of f(x)=7-x^2
|
domain\:f(x)=7-x^{2}
|
range of f(x)= 3/(5x^5)
|
range\:f(x)=\frac{3}{5x^{5}}
|
domain of f(x)=(9x-9)/(2x+7)
|
domain\:f(x)=\frac{9x-9}{2x+7}
|
symmetry y=(3x)/(x^2+25)
|
symmetry\:y=\frac{3x}{x^{2}+25}
|
inverse of f(x)=-2x-3
|
inverse\:f(x)=-2x-3
|
domain of ln(x^2-x-6)
|
domain\:\ln(x^{2}-x-6)
|
intercepts of y^2=+25
|
intercepts\:y^{2}=+25
|
extreme points of f(x)=13x^4-78x^2
|
extreme\:points\:f(x)=13x^{4}-78x^{2}
|
inverse of V= 4/3 pi r^3
|
inverse\:V=\frac{4}{3}\pi\:r^{3}
|
slope intercept of 6x+5y=30
|
slope\:intercept\:6x+5y=30
|
domain of f(x)=sqrt(4-z^2)
|
domain\:f(x)=\sqrt{4-z^{2}}
|
asymptotes of (2h^3+4h^2+5h)/h
|
asymptotes\:\frac{2h^{3}+4h^{2}+5h}{h}
|
domain of f(x)=(x-2)/(x+2)
|
domain\:f(x)=\frac{x-2}{x+2}
|
domain of f(x)=(5x^2)/(3+x)
|
domain\:f(x)=\frac{5x^{2}}{3+x}
|
slope of 4/5
|
slope\:\frac{4}{5}
|
asymptotes of f(x)=(x^2+3)/(7x-4x^2)
|
asymptotes\:f(x)=\frac{x^{2}+3}{7x-4x^{2}}
|
range of f(x)=4x-6
|
range\:f(x)=4x-6
|
extreme points of 3x^4+16x^3
|
extreme\:points\:3x^{4}+16x^{3}
|
intercepts of y=x^2+2x-15
|
intercepts\:y=x^{2}+2x-15
|
slope of y+5=2(x+1)
|
slope\:y+5=2(x+1)
|
inverse of y=x^4+2
|
inverse\:y=x^{4}+2
|
domain of 2/(s^2-4)
|
domain\:\frac{2}{s^{2}-4}
|
range of (7x-21)/((x-7)(x+1))
|
range\:\frac{7x-21}{(x-7)(x+1)}
|
inverse of f(x)=((x+5))/(x+10)
|
inverse\:f(x)=\frac{(x+5)}{x+10}
|
domain of f(x)=(sqrt(3-2x))/(x^2-64)
|
domain\:f(x)=\frac{\sqrt{3-2x}}{x^{2}-64}
|
range of x^2+6x+9
|
range\:x^{2}+6x+9
|
domain of f(x)=sqrt((x-1)(2x+3))
|
domain\:f(x)=\sqrt{(x-1)(2x+3)}
|
intercepts of f(x)=-x^2+4x
|
intercepts\:f(x)=-x^{2}+4x
|
line (-5,2)(4,5)
|
line\:(-5,2)(4,5)
|
x^2+4
|
x^{2}+4
|
y=x+3
|
y=x+3
|
domain of f(x)=((x-2))/((x+4))
|
domain\:f(x)=\frac{(x-2)}{(x+4)}
|
amplitude of cos(x+(3pi)/4)
|
amplitude\:\cos(x+\frac{3\pi}{4})
|
domain of f(x)=sqrt(2x+2)+1>= 5
|
domain\:f(x)=\sqrt{2x+2}+1\ge\:5
|
range of f(x)=x^2-2x-2
|
range\:f(x)=x^{2}-2x-2
|
parity f(x)=-2x^4+3x^2
|
parity\:f(x)=-2x^{4}+3x^{2}
|
periodicity of 7(x)cos(1/2 x)
|
periodicity\:7(x)\cos(\frac{1}{2}x)
|
inverse of f(x)=-1/2 x+2
|
inverse\:f(x)=-\frac{1}{2}x+2
|
inflection points of f(x)=4x^3-12x
|
inflection\:points\:f(x)=4x^{3}-12x
|
slope intercept of y=3x-4
|
slope\:intercept\:y=3x-4
|
midpoint (2,6)(6,2)
|
midpoint\:(2,6)(6,2)
|
critical points of f(x)=x^3-3x^2-9x-5
|
critical\:points\:f(x)=x^{3}-3x^{2}-9x-5
|
perpendicular y=-4x+1
|
perpendicular\:y=-4x+1
|
asymptotes of f(x)= 1/(3x+9)
|
asymptotes\:f(x)=\frac{1}{3x+9}
|
asymptotes of 3^x+1
|
asymptotes\:3^{x}+1
|
asymptotes of e^{3x}(2-x)
|
asymptotes\:e^{3x}(2-x)
|
critical points of f(x)=21x^3-24x^2
|
critical\:points\:f(x)=21x^{3}-24x^{2}
|
critical points of f(x)=2x+7
|
critical\:points\:f(x)=2x+7
|
inverse of (6x+7)/(5x-6)
|
inverse\:\frac{6x+7}{5x-6}
|
inverse of f(x)=sqrt(7(x+5))
|
inverse\:f(x)=\sqrt{7(x+5)}
|
x^2+4x+2
|
x^{2}+4x+2
|
slope of 2y=3x+6
|
slope\:2y=3x+6
|
intercepts of 3x^3-12x^2-15x
|
intercepts\:3x^{3}-12x^{2}-15x
|
domain of f(x)=2x^2+4
|
domain\:f(x)=2x^{2}+4
|
periodicity of-1/7 sin(5x+(pi)/2)
|
periodicity\:-\frac{1}{7}\sin(5x+\frac{\pi}{2})
|
asymptotes of f(x)=((x^3-9x))/(3x^2-6x-9)
|
asymptotes\:f(x)=\frac{(x^{3}-9x)}{3x^{2}-6x-9}
|
inverse of f(x)=(7x-8)/(9x+1)
|
inverse\:f(x)=\frac{7x-8}{9x+1}
|
perpendicular 4x+7y=8,\at (4,-2)
|
perpendicular\:4x+7y=8,\at\:(4,-2)
|
domain of f(x)=(sqrt(8-x))/(sqrt(x+8))
|
domain\:f(x)=\frac{\sqrt{8-x}}{\sqrt{x+8}}
|
domain of (-6x+12)/(5x-10)
|
domain\:\frac{-6x+12}{5x-10}
|
domain of f(x)=(x+10)/(x^2-100)
|
domain\:f(x)=\frac{x+10}{x^{2}-100}
|
domain of f(x)=sqrt(x-1)+sqrt(4-x)
|
domain\:f(x)=\sqrt{x-1}+\sqrt{4-x}
|
symmetry x=9(y-7)^2+5
|
symmetry\:x=9(y-7)^{2}+5
|
inverse of f(x)=(sqrt(x)+2)/(sqrt(x)-6)
|
inverse\:f(x)=\frac{\sqrt{x}+2}{\sqrt{x}-6}
|
extreme points of f(x)=-0.1t^2+1.2t+98.3
|
extreme\:points\:f(x)=-0.1t^{2}+1.2t+98.3
|
critical points of f(x)=2xsqrt(x-5)
|
critical\:points\:f(x)=2x\sqrt{x-5}
|
slope intercept of x-1
|
slope\:intercept\:x-1
|
inverse of x+16
|
inverse\:x+16
|
inverse of f(x)=(1/3 x-3)
|
inverse\:f(x)=(\frac{1}{3}x-3)
|
inverse of f(x)= 1/2 (x-4)^5+1
|
inverse\:f(x)=\frac{1}{2}(x-4)^{5}+1
|
inverse of f(x)=3+(2+x)^{1/2}
|
inverse\:f(x)=3+(2+x)^{\frac{1}{2}}
|
asymptotes of f(x)=(x^2-25)/(x^2-5x+6)
|
asymptotes\:f(x)=\frac{x^{2}-25}{x^{2}-5x+6}
|
domain of f(x)=(2x)/((x-2)(x+1))
|
domain\:f(x)=\frac{2x}{(x-2)(x+1)}
|
domain of f(x)=(5-x)(x^2-3x)
|
domain\:f(x)=(5-x)(x^{2}-3x)
|