domain of 5x-8
|
domain\:5x-8
|
inverse of f(x)=(x+4)/x
|
inverse\:f(x)=\frac{x+4}{x}
|
inverse of (x-3)^2
|
inverse\:(x-3)^{2}
|
cot(x)
|
\cot(x)
|
inflection points of x^3+6x^2+9x
|
inflection\:points\:x^{3}+6x^{2}+9x
|
midpoint (4,8)(12,12)
|
midpoint\:(4,8)(12,12)
|
intercepts of sqrt(2-x)
|
intercepts\:\sqrt{2-x}
|
perpendicular 2x+5y=1
|
perpendicular\:2x+5y=1
|
asymptotes of-2x^2
|
asymptotes\:-2x^{2}
|
shift y=-3cos(6x+pi)
|
shift\:y=-3\cos(6x+\pi)
|
inverse of x^4
|
inverse\:x^{4}
|
distance (1,4)(3,6)
|
distance\:(1,4)(3,6)
|
inverse of f(x)=sqrt(2x+2)
|
inverse\:f(x)=\sqrt{2x+2}
|
inverse of y=(x-3)^{1/2}
|
inverse\:y=(x-3)^{\frac{1}{2}}
|
intercepts of sqrt(2y-a)
|
intercepts\:\sqrt{2y-a}
|
domain of f(x)=(x+6)^2
|
domain\:f(x)=(x+6)^{2}
|
asymptotes of x^3+3x^2+3x+2
|
asymptotes\:x^{3}+3x^{2}+3x+2
|
domain of f(x)=3(2)^x+4
|
domain\:f(x)=3(2)^{x}+4
|
range of f(x)= 2/((3x-1))
|
range\:f(x)=\frac{2}{(3x-1)}
|
inverse of f(x)=-3x^4
|
inverse\:f(x)=-3x^{4}
|
critical points of 2e^{2x}-e^x
|
critical\:points\:2e^{2x}-e^{x}
|
extreme points of x^2+8x-65
|
extreme\:points\:x^{2}+8x-65
|
perpendicular y=-7/6 x+6,\at (6,4)
|
perpendicular\:y=-\frac{7}{6}x+6,\at\:(6,4)
|
range of f(x)=((-4-5x))/(3x-1)
|
range\:f(x)=\frac{(-4-5x)}{3x-1}
|
domain of f(x)=\sqrt[3]{-x+3}
|
domain\:f(x)=\sqrt[3]{-x+3}
|
midpoint (9,-2)(-1,8)
|
midpoint\:(9,-2)(-1,8)
|
inverse of f(x)=(3-x^3)/4
|
inverse\:f(x)=\frac{3-x^{3}}{4}
|
symmetry f(x)=-(x-7)^2-28
|
symmetry\:f(x)=-(x-7)^{2}-28
|
domain of (x(x-3))/5
|
domain\:\frac{x(x-3)}{5}
|
domain of f(x)=(4x+2)/(x^2-2x+2)+6
|
domain\:f(x)=\frac{4x+2}{x^{2}-2x+2}+6
|
line (-5,3.2),(5,0.5)
|
line\:(-5,3.2),(5,0.5)
|
slope intercept of 10x-6y=-48
|
slope\:intercept\:10x-6y=-48
|
asymptotes of f(x)=log_{5}(x)
|
asymptotes\:f(x)=\log_{5}(x)
|
domain of f(x)=(sqrt(4x+5))/(x-6)
|
domain\:f(x)=\frac{\sqrt{4x+5}}{x-6}
|
range of f(x)=-3/2 sin(2x-(3pi)/4)+7/3
|
range\:f(x)=-\frac{3}{2}\sin(2x-\frac{3π}{4})+\frac{7}{3}
|
asymptotes of f(x)=(1-x^2)/(2+x)
|
asymptotes\:f(x)=\frac{1-x^{2}}{2+x}
|
inverse of 2+\sqrt[3]{x}
|
inverse\:2+\sqrt[3]{x}
|
domain of sin(e^t-1)
|
domain\:\sin(e^{t}-1)
|
inverse of f(x)=sqrt(4-x^2)
|
inverse\:f(x)=\sqrt{4-x^{2}}
|
range of f(x)=-6
|
range\:f(x)=-6
|
inverse of f(x)= 1/2 x^4
|
inverse\:f(x)=\frac{1}{2}x^{4}
|
domain of f(x)=(\sqrt[4]{x})^5
|
domain\:f(x)=(\sqrt[4]{x})^{5}
|
range of x^4-9x^2
|
range\:x^{4}-9x^{2}
|
critical points of x^{15/7}+x^{8/7}
|
critical\:points\:x^{\frac{15}{7}}+x^{\frac{8}{7}}
|
domain of f(x)=9x-4
|
domain\:f(x)=9x-4
|
inverse of 3sqrt(x)
|
inverse\:3\sqrt{x}
|
range of f(x)= 6/5 x^2+3/2
|
range\:f(x)=\frac{6}{5}x^{2}+\frac{3}{2}
|
distance (11.2,-2.2)(5.2,-10.2)
|
distance\:(11.2,-2.2)(5.2,-10.2)
|
inverse of f(x)=-1/4 x+15
|
inverse\:f(x)=-\frac{1}{4}x+15
|
inverse of f(x)= 9/x+4
|
inverse\:f(x)=\frac{9}{x}+4
|
range of f(x)=sqrt(1-(x-2)^2)
|
range\:f(x)=\sqrt{1-(x-2)^{2}}
|
extreme points of f(x)=12x^{2/3}-x
|
extreme\:points\:f(x)=12x^{\frac{2}{3}}-x
|
intercepts of f(x)=(x^2-x-6)/(x^2-4)
|
intercepts\:f(x)=\frac{x^{2}-x-6}{x^{2}-4}
|
inverse of f(x)=ln((x+3)/(2-x))
|
inverse\:f(x)=\ln(\frac{x+3}{2-x})
|
domain of f(x)=(2x+8)/(4x)
|
domain\:f(x)=\frac{2x+8}{4x}
|
domain of f(x)=sqrt(6x-1)x
|
domain\:f(x)=\sqrt{6x-1}x
|
inverse of f(x)=(2x+1)/(x^2-1)
|
inverse\:f(x)=\frac{2x+1}{x^{2}-1}
|
inverse of f(x)= 1/2 x-9
|
inverse\:f(x)=\frac{1}{2}x-9
|
inverse of y=log_{2}(x-10)
|
inverse\:y=\log_{2}(x-10)
|
inverse of f(x)=y=(x-1)^2+2
|
inverse\:f(x)=y=(x-1)^{2}+2
|
domain of f(x)=2(x-1)^2
|
domain\:f(x)=2(x-1)^{2}
|
domain of sqrt(7-x)
|
domain\:\sqrt{7-x}
|
extreme points of xe^{-x}
|
extreme\:points\:xe^{-x}
|
intercepts of f(x)=(x^2-9)/(x+3)
|
intercepts\:f(x)=\frac{x^{2}-9}{x+3}
|
inverse of sqrt(1+t^2)
|
inverse\:\sqrt{1+t^{2}}
|
inverse of f(x)=x^2-4x-3
|
inverse\:f(x)=x^{2}-4x-3
|
inverse of f(x)=sqrt(x+2)-7
|
inverse\:f(x)=\sqrt{x+2}-7
|
perpendicular y=5x+2,\at (1,1)
|
perpendicular\:y=5x+2,\at\:(1,1)
|
asymptotes of f(x)=(3x-x^2)/(x^4-9x^2)
|
asymptotes\:f(x)=\frac{3x-x^{2}}{x^{4}-9x^{2}}
|
domain of f(x)=(x^3)/(x^2-4x-96)
|
domain\:f(x)=\frac{x^{3}}{x^{2}-4x-96}
|
domain of f(x)=-x^2-4
|
domain\:f(x)=-x^{2}-4
|
midpoint (5,-2)(-1,3)
|
midpoint\:(5,-2)(-1,3)
|
domain of f(x)= 2/(t^2+4)
|
domain\:f(x)=\frac{2}{t^{2}+4}
|
midpoint (0,0)(40,40)
|
midpoint\:(0,0)(40,40)
|
inflection points of 6x^4+8x^3
|
inflection\:points\:6x^{4}+8x^{3}
|
range of f(x)=3sin(pi x)
|
range\:f(x)=3\sin(\pi\:x)
|
symmetry (3x)/(x^2-4)
|
symmetry\:\frac{3x}{x^{2}-4}
|
domain of sqrt(1/x)
|
domain\:\sqrt{\frac{1}{x}}
|
domain of f(x)=sqrt(3x+15)
|
domain\:f(x)=\sqrt{3x+15}
|
line 3x^2+x-1/12 =0
|
line\:3x^{2}+x-\frac{1}{12}=0
|
extreme points of f(x)=6x^2+2x^3
|
extreme\:points\:f(x)=6x^{2}+2x^{3}
|
midpoint (0.3,0.7)(0.1,0.9)
|
midpoint\:(0.3,0.7)(0.1,0.9)
|
domain of f(x)=(2x+4)/(x^2-5x)
|
domain\:f(x)=\frac{2x+4}{x^{2}-5x}
|
domain of f(x)=sqrt(4-5x+x^2)
|
domain\:f(x)=\sqrt{4-5x+x^{2}}
|
range of 1/x-4
|
range\:\frac{1}{x}-4
|
asymptotes of (x^2-x)/(x^2-5x+4)
|
asymptotes\:\frac{x^{2}-x}{x^{2}-5x+4}
|
parity y=2t+tan(t)
|
parity\:y=2t+\tan(t)
|
critical points of f(x)= x/(x^2+7x+6)
|
critical\:points\:f(x)=\frac{x}{x^{2}+7x+6}
|
domain of f(x)=sqrt(4x-3)
|
domain\:f(x)=\sqrt{4x-3}
|
inverse of ln(64.86)=
|
inverse\:\ln(64.86)=
|
domain of f(x)=(-x^2)/(x+1)
|
domain\:f(x)=\frac{-x^{2}}{x+1}
|
asymptotes of (x^2+x-12)/(x^2-4)
|
asymptotes\:\frac{x^{2}+x-12}{x^{2}-4}
|
domain of f(x)=sqrt(t-7)
|
domain\:f(x)=\sqrt{t-7}
|
inverse of h(x)=-x
|
inverse\:h(x)=-x
|
midpoint (-3,-2)(8,6)
|
midpoint\:(-3,-2)(8,6)
|
domain of f(x)=sqrt(x(4-x))
|
domain\:f(x)=\sqrt{x(4-x)}
|
y=-3x+5
|
y=-3x+5
|
domain of f(x)=(sqrt(x+1))/(5x+4)
|
domain\:f(x)=\frac{\sqrt{x+1}}{5x+4}
|
extreme points of ln(2-5x^2)
|
extreme\:points\:\ln(2-5x^{2})
|
intercepts of f(4)=-2x^2+4x+8
|
intercepts\:f(4)=-2x^{2}+4x+8
|