asymptotes of f(x)=(-2x+6)/(x^2-9)
|
asymptotes\:f(x)=\frac{-2x+6}{x^{2}-9}
|
extreme points of f(x)= x/(x^3+2)
|
extreme\:points\:f(x)=\frac{x}{x^{3}+2}
|
range of-6x-18
|
range\:-6x-18
|
intercepts of y=-5
|
intercepts\:y=-5
|
inverse of 5x^2+210x-34775
|
inverse\:5x^{2}+210x-34775
|
range of f(x)=(x^2-5)/3
|
range\:f(x)=\frac{x^{2}-5}{3}
|
amplitude of cos(8x)
|
amplitude\:\cos(8x)
|
line (3,-4)m=2
|
line\:(3,-4)m=2
|
asymptotes of f(x)= 3/x+1
|
asymptotes\:f(x)=\frac{3}{x}+1
|
inflection points of f(x)=x^5+5x^4
|
inflection\:points\:f(x)=x^{5}+5x^{4}
|
line 5x-y=21
|
line\:5x-y=21
|
domain of 4t^2+1
|
domain\:4t^{2}+1
|
line-x+3y
|
line\:-x+3y
|
periodicity of f(x)=sin((2pi)/3)
|
periodicity\:f(x)=\sin(\frac{2\pi}{3})
|
inverse of (8x)/(x^2+25)
|
inverse\:\frac{8x}{x^{2}+25}
|
symmetry 2x^6-5x
|
symmetry\:2x^{6}-5x
|
extreme points of x^3-27x
|
extreme\:points\:x^{3}-27x
|
inverse of f(x)=2^{x/2}+5
|
inverse\:f(x)=2^{\frac{x}{2}}+5
|
domain of sqrt(4-5x)
|
domain\:\sqrt{4-5x}
|
range of x^2+2x-5
|
range\:x^{2}+2x-5
|
domain of f(x)=11-sqrt(x)
|
domain\:f(x)=11-\sqrt{x}
|
frequency 3+sin((theta)/2)
|
frequency\:3+\sin(\frac{\theta}{2})
|
asymptotes of f(x)=(x^2-4)/(2x-3)
|
asymptotes\:f(x)=\frac{x^{2}-4}{2x-3}
|
asymptotes of f(x)= 1/x-1
|
asymptotes\:f(x)=\frac{1}{x}-1
|
intercepts of x^2-2x-6
|
intercepts\:x^{2}-2x-6
|
inflection points of f(x)= 3/5 x^5-5x^4
|
inflection\:points\:f(x)=\frac{3}{5}x^{5}-5x^{4}
|
range of f(x)=sqrt(x-3)+2
|
range\:f(x)=\sqrt{x-3}+2
|
slope intercept of y=x+5
|
slope\:intercept\:y=x+5
|
inverse of f(x)= 7/(x+6)
|
inverse\:f(x)=\frac{7}{x+6}
|
critical points of 2700x+(1555200)/x
|
critical\:points\:2700x+\frac{1555200}{x}
|
domain of f(x)= x/(1-ln(x-4))
|
domain\:f(x)=\frac{x}{1-\ln(x-4)}
|
intercepts of (x^3)/((x-1)^2)
|
intercepts\:\frac{x^{3}}{(x-1)^{2}}
|
line (8+60,)(6+160,)
|
line\:(8+60,)(6+160,)
|
line (0,0),(10,5)
|
line\:(0,0),(10,5)
|
intercepts of f(x)=x^3-8
|
intercepts\:f(x)=x^{3}-8
|
line (-5,2)(3,6)
|
line\:(-5,2)(3,6)
|
domain of f(x)=sqrt(40+x)
|
domain\:f(x)=\sqrt{40+x}
|
extreme points of f(x)=-2+e^{3x}(4-2x)
|
extreme\:points\:f(x)=-2+e^{3x}(4-2x)
|
y=2x-5
|
y=2x-5
|
asymptotes of (16)/(x^2-2x-8)
|
asymptotes\:\frac{16}{x^{2}-2x-8}
|
midpoint (-8,6)(0,1)
|
midpoint\:(-8,6)(0,1)
|
domain of f(x)=(x+6)/(x^2+2)
|
domain\:f(x)=\frac{x+6}{x^{2}+2}
|
inverse of f(x)=-7x-2
|
inverse\:f(x)=-7x-2
|
slope of 4x+8y=4
|
slope\:4x+8y=4
|
domain of f(x)=(10)/(sqrt(1-x))
|
domain\:f(x)=\frac{10}{\sqrt{1-x}}
|
domain of f(x)=(sqrt(x+8))/(x-4)
|
domain\:f(x)=\frac{\sqrt{x+8}}{x-4}
|
parallel 2e^x-33x-5
|
parallel\:2e^{x}-33x-5
|
domain of f(x)= x/(2x^2-5)
|
domain\:f(x)=\frac{x}{2x^{2}-5}
|
domain of f(x)=ln(2-x)
|
domain\:f(x)=\ln(2-x)
|
slope of y=(5(x-7))/6+5
|
slope\:y=\frac{5(x-7)}{6}+5
|
range of f(x)=1\div (1-1\div (x-2))
|
range\:f(x)=1\div\:(1-1\div\:(x-2))
|
range of sqrt(6-x)
|
range\:\sqrt{6-x}
|
range of (2x+5)/(3x+1)
|
range\:\frac{2x+5}{3x+1}
|
asymptotes of f(x)=x^3+2x^2+x+10
|
asymptotes\:f(x)=x^{3}+2x^{2}+x+10
|
intercepts of f(x)=x^6-5x^4-6x^2
|
intercepts\:f(x)=x^{6}-5x^{4}-6x^{2}
|
inverse of f(x)=y=x^3
|
inverse\:f(x)=y=x^{3}
|
intercepts of f(x)=x-4sqrt(x)
|
intercepts\:f(x)=x-4\sqrt{x}
|
intercepts of f(x)=x^2+6x+6
|
intercepts\:f(x)=x^{2}+6x+6
|
intercepts of f(x)=2x^2+8x-24
|
intercepts\:f(x)=2x^{2}+8x-24
|
midpoint (-1,-5)(-5,9)
|
midpoint\:(-1,-5)(-5,9)
|
parity x^3-2x
|
parity\:x^{3}-2x
|
extreme points of f(x)=2x^3-x^2-4x+8
|
extreme\:points\:f(x)=2x^{3}-x^{2}-4x+8
|
domain of y=x+3
|
domain\:y=x+3
|
distance (3,6)(7,7)
|
distance\:(3,6)(7,7)
|
range of f(x)=3cos(x)-2
|
range\:f(x)=3\cos(x)-2
|
parity g(x)=x^2|x|+5
|
parity\:g(x)=x^{2}|x|+5
|
domain of f(x)=sqrt((2x+1)/(x-5))
|
domain\:f(x)=\sqrt{\frac{2x+1}{x-5}}
|
line (2,-3)(4,5)
|
line\:(2,-3)(4,5)
|
midpoint (-1,1)(-8,-4)
|
midpoint\:(-1,1)(-8,-4)
|
asymptotes of f(x)= x/(x^2+x-2)
|
asymptotes\:f(x)=\frac{x}{x^{2}+x-2}
|
asymptotes of f(x)=(1/5)^x
|
asymptotes\:f(x)=(\frac{1}{5})^{x}
|
extreme points of f(x)=e^{(x)}(2x^2+x-8)
|
extreme\:points\:f(x)=e^{(x)}(2x^{2}+x-8)
|
domain of f(x)=-|x|+3
|
domain\:f(x)=-|x|+3
|
inverse of f(x)=(5-x)/x
|
inverse\:f(x)=\frac{5-x}{x}
|
asymptotes of f(x)=((x^2-3x-18))/x
|
asymptotes\:f(x)=\frac{(x^{2}-3x-18)}{x}
|
line (-1,1),(-5,2)
|
line\:(-1,1),(-5,2)
|
domain of (sqrt(1+x))/(3-x)
|
domain\:\frac{\sqrt{1+x}}{3-x}
|
midpoint (-2,-5)(3,-2)
|
midpoint\:(-2,-5)(3,-2)
|
slope of y=-2x+6
|
slope\:y=-2x+6
|
extreme points of f(x)=-16x^2+40x+2
|
extreme\:points\:f(x)=-16x^{2}+40x+2
|
line (100,10500),(20,11000)
|
line\:(100,10500),(20,11000)
|
domain of f(x)=8x+13
|
domain\:f(x)=8x+13
|
domain of h(x)=(x)
|
domain\:h(x)=(x)
|
domain of g(t)=-5/(2t^{3/2)}
|
domain\:g(t)=-\frac{5}{2t^{\frac{3}{2}}}
|
range of f(x)=((3x^2))/(2x+2)
|
range\:f(x)=\frac{(3x^{2})}{2x+2}
|
domain of f(x)=\sqrt[3]{1-x^2}
|
domain\:f(x)=\sqrt[3]{1-x^{2}}
|
inverse of f(x)=((4-x))/2
|
inverse\:f(x)=\frac{(4-x)}{2}
|
distance (-1,8)(-5,4)
|
distance\:(-1,8)(-5,4)
|
asymptotes of f(x)=(x^2+1)/(3(x-8))
|
asymptotes\:f(x)=\frac{x^{2}+1}{3(x-8)}
|
inflection points of 4x+8cos(x)
|
inflection\:points\:4x+8\cos(x)
|
domain of-1/(2sqrt(9-x))
|
domain\:-\frac{1}{2\sqrt{9-x}}
|
extreme points of f(x)=4x^3+3x^2-6x+1
|
extreme\:points\:f(x)=4x^{3}+3x^{2}-6x+1
|
domain of sqrt((x^3+8)/(x^2+9x+14))
|
domain\:\sqrt{\frac{x^{3}+8}{x^{2}+9x+14}}
|
domain of f(x)=10-x
|
domain\:f(x)=10-x
|
inverse of f(x)=(x-5)^2+3x<= 5
|
inverse\:f(x)=(x-5)^{2}+3x\le\:5
|
domain of f(x)=8x^2+7x-1
|
domain\:f(x)=8x^{2}+7x-1
|
parallel (10x+6y=8)
|
parallel\:(10x+6y=8)
|
slope of 9/8 x+5
|
slope\:\frac{9}{8}x+5
|
domain of ln(9-t^2)
|
domain\:\ln(9-t^{2})
|
y=2x-3
|
y=2x-3
|