domain of f(x)=(9x)/(9-7x)
|
domain\:f(x)=\frac{9x}{9-7x}
|
domain of f(x)=(2x+2)/(x^2-x-2)
|
domain\:f(x)=\frac{2x+2}{x^{2}-x-2}
|
domain of f(x)=0.25x+20
|
domain\:f(x)=0.25x+20
|
domain of f(x)=e^{3-x^2}
|
domain\:f(x)=e^{3-x^{2}}
|
domain of f(x)=log_{8}(x^2+16)
|
domain\:f(x)=\log_{8}(x^{2}+16)
|
domain of f(x)=(x+3)/(7x-2)
|
domain\:f(x)=\frac{x+3}{7x-2}
|
domain of f(x)=sqrt((3x+1)/(x+1)-2)
|
domain\:f(x)=\sqrt{\frac{3x+1}{x+1}-2}
|
amplitude of-2sin(2pi x)
|
amplitude\:-2\sin(2\pi\:x)
|
domain of f(x)=sqrt(x+8)-5
|
domain\:f(x)=\sqrt{x+8}-5
|
domain of f(x)=(-6072x+38640)/(2116)
|
domain\:f(x)=\frac{-6072x+38640}{2116}
|
domain of f(x)=log_{8}(1-4x)
|
domain\:f(x)=\log_{8}(1-4x)
|
domain of f(x)=-10
|
domain\:f(x)=-10
|
domain of sqrt(x+5)-(sqrt(3-x))/x
|
domain\:\sqrt{x+5}-\frac{\sqrt{3-x}}{x}
|
domain of f(x)=-sqrt(((x^2))/(x-1))
|
domain\:f(x)=-\sqrt{\frac{(x^{2})}{x-1}}
|
domain of (2x^3-x^2-18x+9)/(x^2+4x+3)
|
domain\:\frac{2x^{3}-x^{2}-18x+9}{x^{2}+4x+3}
|
domain of f(x)=-4x^2+16x-10
|
domain\:f(x)=-4x^{2}+16x-10
|
domain of f(x)=(| 1/x |)/(1/x)
|
domain\:f(x)=\frac{\left|\frac{1}{x}\right|}{\frac{1}{x}}
|
inflection points of \sqrt[3]{x}(x+4)
|
inflection\:points\:\sqrt[3]{x}(x+4)
|
domain of f(x)=xln(1/x)
|
domain\:f(x)=x\ln(\frac{1}{x})
|
domain of 5x+6+1-8x
|
domain\:5x+6+1-8x
|
domain of y=(sqrt(5-x))/(-4x+8)
|
domain\:y=\frac{\sqrt{5-x}}{-4x+8}
|
domain of (4x^2+1)/((-2x+1)x)
|
domain\:\frac{4x^{2}+1}{(-2x+1)x}
|
domain of f(x)=x^2y^2-16y^2+x-8=0
|
domain\:f(x)=x^{2}y^{2}-16y^{2}+x-8=0
|
domain of f(x)= 5/((4x-1))
|
domain\:f(x)=\frac{5}{(4x-1)}
|
domain of (x^2)/(log_{e)(x)}
|
domain\:\frac{x^{2}}{\log_{e}(x)}
|
domain of f(x)=(2x)/(sqrt(ln(x)))
|
domain\:f(x)=\frac{2x}{\sqrt{\ln(x)}}
|
domain of (x)^3+(x)^2-8(x)+5
|
domain\:(x)^{3}+(x)^{2}-8(x)+5
|
domain of f(x)=((\sqrt[4]{x}))/(25-x)
|
domain\:f(x)=\frac{(\sqrt[4]{x})}{25-x}
|
distance (-4,-3)(-6,-8)
|
distance\:(-4,-3)(-6,-8)
|
domain of f(x)=(2x-1)/(x^2+2x)
|
domain\:f(x)=\frac{2x-1}{x^{2}+2x}
|
domain of 3x^4sqrt(x)
|
domain\:3x^{4}\sqrt{x}
|
domain of x^2-12x+58
|
domain\:x^{2}-12x+58
|
domain of 5x^3+2x^2-7x
|
domain\:5x^{3}+2x^{2}-7x
|
domain of 1/(xe^x)
|
domain\:\frac{1}{xe^{x}}
|
domain of f(x)=2x^2-16x-9
|
domain\:f(x)=2x^{2}-16x-9
|
domain of ((x+4))/((4-sqrt(x^2-9)))
|
domain\:\frac{(x+4)}{(4-\sqrt{x^{2}-9})}
|
domain of f(x)=sqrt((1/(1-x))-2)
|
domain\:f(x)=\sqrt{(\frac{1}{1-x})-2}
|
domain of f(x)=log_{10}(1/3)x
|
domain\:f(x)=\log_{10}(\frac{1}{3})x
|
domain of 138.79*1/(x^{0.991)}
|
domain\:138.79\cdot\:\frac{1}{x^{0.991}}
|
asymptotes of f(x)=x^2-5x-24
|
asymptotes\:f(x)=x^{2}-5x-24
|
domain of (x-3)/(x-6)
|
domain\:\frac{x-3}{x-6}
|
domain of x^8
|
domain\:x^{8}
|
extreme f(x)=4x^3+33x^2-36x-530
|
extreme\:f(x)=4x^{3}+33x^{2}-36x-530
|
extreme f(x)=30+20x^3-5x^4-x^5
|
extreme\:f(x)=30+20x^{3}-5x^{4}-x^{5}
|
perpendicular (-3,8)y= 3/2 x-3/2
|
perpendicular\:(-3,8)y=\frac{3}{2}x-\frac{3}{2}
|
extreme y=-2x^3+540x^2
|
extreme\:y=-2x^{3}+540x^{2}
|
f(x,y)=x^3+4y^2-3x+1
|
f(x,y)=x^{3}+4y^{2}-3x+1
|
R(x,y)=-x^2-y^2+x+2y-1
|
R(x,y)=-x^{2}-y^{2}+x+2y-1
|
extreme f(x)=9x^3-7x^2+3x+10
|
extreme\:f(x)=9x^{3}-7x^{2}+3x+10
|
f(x,y)=(2x-x^2)(2y-y^2)
|
f(x,y)=(2x-x^{2})(2y-y^{2})
|
extreme x^2-6x+10
|
extreme\:x^{2}-6x+10
|
f(x,y)=7-xy+x^5y^3
|
f(x,y)=7-xy+x^{5}y^{3}
|
extreme f(x)=2x^3-3x^2-12x+8
|
extreme\:f(x)=2x^{3}-3x^{2}-12x+8
|
range of f(x)=sqrt(x-9)+4
|
range\:f(x)=\sqrt{x-9}+4
|
extreme f(x)=3x^2-x^3,1<= x<= 5
|
extreme\:f(x)=3x^{2}-x^{3},1\le\:x\le\:5
|
f(x,y)=x^2+y^3-4x-3y
|
f(x,y)=x^{2}+y^{3}-4x-3y
|
extreme f(x)=cos(3x)-2
|
extreme\:f(x)=\cos(3x)-2
|
extreme f(x)=-sin(x)-4
|
extreme\:f(x)=-\sin(x)-4
|
extreme f(x)=2x^3-x^2-4x+8(-1)
|
extreme\:f(x)=2x^{3}-x^{2}-4x+8(-1)
|
f(x,y)=2x^5+x^3y^2+6xy^4
|
f(x,y)=2x^{5}+x^{3}y^{2}+6xy^{4}
|
slope intercept of 3x+y=14
|
slope\:intercept\:3x+y=14
|
extreme f(x,y)=x^2-2x^3+2x^2+3xy
|
extreme\:f(x,y)=x^{2}-2x^{3}+2x^{2}+3xy
|
f(x,y)=x^2y^3-(x-2y)^2+6x^4y=3xy
|
f(x,y)=x^{2}y^{3}-(x-2y)^{2}+6x^{4}y=3xy
|
extreme f(x)=2x^4-20x^2+18
|
extreme\:f(x)=2x^{4}-20x^{2}+18
|
extreme-x^2+4x+6
|
extreme\:-x^{2}+4x+6
|
f(x,y)=x^2y-15xy^2+12y
|
f(x,y)=x^{2}y-15xy^{2}+12y
|
f(x,y)=-2x^3+6xy+3y^3
|
f(x,y)=-2x^{3}+6xy+3y^{3}
|
extreme f(x,y)=x^2+4y^2-2x+8y-1
|
extreme\:f(x,y)=x^{2}+4y^{2}-2x+8y-1
|
extreme f(x)=x^2+2x+3
|
extreme\:f(x)=x^{2}+2x+3
|
f(x,y)=sqrt(400-9x^2-49y^2)
|
f(x,y)=\sqrt{400-9x^{2}-49y^{2}}
|
shift 1.5cos((pi(x-3))/(26))+6.5
|
shift\:1.5\cos(\frac{\pi(x-3)}{26})+6.5
|
f(x,y)=3x^2-12x+2y^2-8y+7
|
f(x,y)=3x^{2}-12x+2y^{2}-8y+7
|
f(x,y)=x*e^{x+y^2}
|
f(x,y)=x\cdot\:e^{x+y^{2}}
|
extreme f(x)=2sin^2(x)
|
extreme\:f(x)=2\sin^{2}(x)
|
extreme f(x)=5+6x-8x^3
|
extreme\:f(x)=5+6x-8x^{3}
|
extreme f(x)=2x^3+24x+5
|
extreme\:f(x)=2x^{3}+24x+5
|
extreme f(x,y)=3-x^4+2x^2-y^2
|
extreme\:f(x,y)=3-x^{4}+2x^{2}-y^{2}
|
f(x,y)=xsqrt(y)+ysqrt(x)
|
f(x,y)=x\sqrt{y}+y\sqrt{x}
|
extreme f(x)=x^2-8ln(x)
|
extreme\:f(x)=x^{2}-8\ln(x)
|
P(x,y)=(x+1)^2-(y-2)^2
|
P(x,y)=(x+1)^{2}-(y-2)^{2}
|
inverse of f(x)=(x+7)^3+2
|
inverse\:f(x)=(x+7)^{3}+2
|
extreme f(x)=3x^2e^x
|
extreme\:f(x)=3x^{2}e^{x}
|
extreme f(x)=4y^2-5x=2y-3y^2
|
extreme\:f(x)=4y^{2}-5x=2y-3y^{2}
|
f(x,y)=x^3-y^3-6xy-4
|
f(x,y)=x^{3}-y^{3}-6xy-4
|
extreme f(x)=(2(x+2)^2)/(x^2)
|
extreme\:f(x)=\frac{2(x+2)^{2}}{x^{2}}
|
f(x,y)=y^3x^5+yx
|
f(x,y)=y^{3}x^{5}+yx
|
f(x,y)=2x^3-2y^3+12xy+3
|
f(x,y)=2x^{3}-2y^{3}+12xy+3
|
extreme 2x^3-3x^2-12x+8
|
extreme\:2x^{3}-3x^{2}-12x+8
|
f(x,y)=xy+e^{xy}
|
f(x,y)=xy+e^{xy}
|
g(x,y)=ln(x^2+y^2-1)
|
g(x,y)=\ln(x^{2}+y^{2}-1)
|
parity f(x)=x^2+1
|
parity\:f(x)=x^{2}+1
|
extreme f(x)=x^3-3x-1
|
extreme\:f(x)=x^{3}-3x-1
|
f(x,y)=-3x^2-2y^2+3x-4y+5
|
f(x,y)=-3x^{2}-2y^{2}+3x-4y+5
|
P(x,y)=36x^2-9y^2
|
P(x,y)=36x^{2}-9y^{2}
|
f(x,y)=(500)/(4+x^2+y^2)
|
f(x,y)=\frac{500}{4+x^{2}+y^{2}}
|
extreme f(x)=x^3+5x-4
|
extreme\:f(x)=x^{3}+5x-4
|
f(x,y)=2y^2+2xy+x^2-16x-20y
|
f(x,y)=2y^{2}+2xy+x^{2}-16x-20y
|
f(x,y)= 1/x-(64)/y+xy
|
f(x,y)=\frac{1}{x}-\frac{64}{y}+xy
|
extreme f(x)=xsqrt(5-x)
|
extreme\:f(x)=x\sqrt{5-x}
|
extreme f(x)=cos(3x)-2,(0,2pi)
|
extreme\:f(x)=\cos(3x)-2,(0,2π)
|