Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inflection (x^3)/(x^2-4)
inflection\:\frac{x^{3}}{x^{2}-4}
extreme f(x)=-64x^3+12x+4
extreme\:f(x)=-64x^{3}+12x+4
asymptotes of f(x)=(e^{2x}-2)/(e^{2x)+1}
asymptotes\:f(x)=\frac{e^{2x}-2}{e^{2x}+1}
slope ofintercept 5-(2y-2x)/2 =4x+4
slopeintercept\:5-\frac{2y-2x}{2}=4x+4
asymptotes of f(x)=(x^2+5x+4)/(x^2-1)
asymptotes\:f(x)=\frac{x^{2}+5x+4}{x^{2}-1}
periodicity of f(x)=sin(1/2 x)
periodicity\:f(x)=\sin(\frac{1}{2}x)
domain of f(x)=-x^2+5x-3
domain\:f(x)=-x^{2}+5x-3
inverse of f(x)= 1/(3x+1)
inverse\:f(x)=\frac{1}{3x+1}
intercepts of f(x)=-(x-3)^2+5
intercepts\:f(x)=-(x-3)^{2}+5
inverse of f(x)=-5x+4
inverse\:f(x)=-5x+4
extreme f(x)=x^4-6x^2
extreme\:f(x)=x^{4}-6x^{2}
parallel y=-2x-2
parallel\:y=-2x-2
inverse of-1/3 sin(x/3)
inverse\:-\frac{1}{3}\sin(\frac{x}{3})
intercepts of f(x)=((2))/((x+2)^2)
intercepts\:f(x)=\frac{(2)}{(x+2)^{2}}
domain of (x-1)/(x^2+1)
domain\:\frac{x-1}{x^{2}+1}
inflection f(x)=(1+x)/(1+x^2)
inflection\:f(x)=\frac{1+x}{1+x^{2}}
domain of f(x)=2sqrt(x+5)
domain\:f(x)=2\sqrt{x+5}
domain of f(x)= 3/(2/x-1)
domain\:f(x)=\frac{3}{\frac{2}{x}-1}
inverse of 8x-7
inverse\:8x-7
distance (-1,1.1),(1,-2.9)
distance\:(-1,1.1),(1,-2.9)
simplify (-1.2)(3.7)
simplify\:(-1.2)(3.7)
critical sin(2x)
critical\:\sin(2x)
inverse of f(x)=((x+16))/((x-4))
inverse\:f(x)=\frac{(x+16)}{(x-4)}
domain of f(x)= 1/(sqrt(20-x))
domain\:f(x)=\frac{1}{\sqrt{20-x}}
shift 3cot(1/2 x)-2
shift\:3\cot(\frac{1}{2}x)-2
domain of (sqrt(2+x))/(x-1)
domain\:\frac{\sqrt{2+x}}{x-1}
critical x/(x^2+14x+45)
critical\:\frac{x}{x^{2}+14x+45}
f(x)=3x^2-2x+1
f(x)=3x^{2}-2x+1
inflection 17x^4-102x^2
inflection\:17x^{4}-102x^{2}
domain of sqrt(-x+3)
domain\:\sqrt{-x+3}
slope of 9^{1/2}+4^{1/2}
slope\:9^{\frac{1}{2}}+4^{\frac{1}{2}}
line y=-2x+5
line\:y=-2x+5
domain of f(x)=-(31)/((6+x)^2)
domain\:f(x)=-\frac{31}{(6+x)^{2}}
extreme f(x)=(18-2x)^2x
extreme\:f(x)=(18-2x)^{2}x
perpendicular y=34x-5
perpendicular\:y=34x-5
domain of f(x)=(x/(x+3))/(x/(x+3)+3)
domain\:f(x)=\frac{\frac{x}{x+3}}{\frac{x}{x+3}+3}
domain of 6/x+3
domain\:\frac{6}{x}+3
range of (3x+3)/(x+2)
range\:\frac{3x+3}{x+2}
asymptotes of f(x)=-2^x
asymptotes\:f(x)=-2^{x}
midpoint (1,-7),(-4,1)
midpoint\:(1,-7),(-4,1)
domain of f(x)=(sqrt(x-5))/(x-11)
domain\:f(x)=\frac{\sqrt{x-5}}{x-11}
inverse of f(x)=1-1/5 x
inverse\:f(x)=1-\frac{1}{5}x
parity f(x)=(3x^5)/(2x^3+x)
parity\:f(x)=\frac{3x^{5}}{2x^{3}+x}
domain of-1/(2x^{3/2)}
domain\:-\frac{1}{2x^{\frac{3}{2}}}
critical f(x)=-4x^2+48x
critical\:f(x)=-4x^{2}+48x
critical x^2-4
critical\:x^{2}-4
inverse of f(x)= 1/(x-2)-1
inverse\:f(x)=\frac{1}{x-2}-1
domain of 1+sqrt(x-2)
domain\:1+\sqrt{x-2}
intercepts of f(x)=(x-6)/(x+6)
intercepts\:f(x)=\frac{x-6}{x+6}
slope of 8x-5y=40
slope\:8x-5y=40
domain of f(x)=(x+1)^2-1
domain\:f(x)=(x+1)^{2}-1
domain of f(x)=x^2+x-6
domain\:f(x)=x^{2}+x-6
extreme f(x)=xe^{-2x}
extreme\:f(x)=xe^{-2x}
domain of f(x)=(7x(x-6))/(6x^2-41x-7)
domain\:f(x)=\frac{7x(x-6)}{6x^{2}-41x-7}
intercepts of x^3-216
intercepts\:x^{3}-216
slope ofintercept x+6y=5,(2,9)
slopeintercept\:x+6y=5,(2,9)
domain of \sqrt[4]{x^3}
domain\:\sqrt[4]{x^{3}}
inverse of f(x)=(\sqrt[3]{x-1})
inverse\:f(x)=(\sqrt[3]{x-1})
monotone (x^3)/(12)-(x^2)/(12)
monotone\:\frac{x^{3}}{12}-\frac{x^{2}}{12}
inverse of f(x)=ln(4x)
inverse\:f(x)=\ln(4x)
parallel y=4x+3
parallel\:y=4x+3
slope ofintercept y=-4x-3
slopeintercept\:y=-4x-3
extreme f(x)=0.001x
extreme\:f(x)=0.001x
periodicity of sin(x-3pi)
periodicity\:\sin(x-3π)
extreme f(x)=x^3-2x^2+8x+40
extreme\:f(x)=x^{3}-2x^{2}+8x+40
inverse of 6x
inverse\:6x
critical (7x-2)/(x+6)
critical\:\frac{7x-2}{x+6}
inflection x^3+3x^2+3x+2
inflection\:x^{3}+3x^{2}+3x+2
range of sqrt((x^2-5x+6)/(x+3))
range\:\sqrt{\frac{x^{2}-5x+6}{x+3}}
simplify (-2.5)(4)
simplify\:(-2.5)(4)
inverse of f(x)=e^{1-x}
inverse\:f(x)=e^{1-x}
intercepts of f(x)=x^2-4x+4
intercepts\:f(x)=x^{2}-4x+4
inverse of f(x)=(8x)/(x^2+81)
inverse\:f(x)=\frac{8x}{x^{2}+81}
intercepts of f(x)=-x^2-4x
intercepts\:f(x)=-x^{2}-4x
parallel y=4x-8
parallel\:y=4x-8
asymptotes of f(x)=(15x^3)/(3x^2+1)
asymptotes\:f(x)=\frac{15x^{3}}{3x^{2}+1}
inverse of log_{2}(x+3)-1
inverse\:\log_{2}(x+3)-1
inflection f(x)=x^4-10x^3
inflection\:f(x)=x^{4}-10x^{3}
intercepts of x^2+81
intercepts\:x^{2}+81
domain of 5+(6+x)^{1/2}
domain\:5+(6+x)^{\frac{1}{2}}
domain of sqrt(4-3x)
domain\:\sqrt{4-3x}
inverse of \sqrt[3]{x+4}
inverse\:\sqrt[3]{x+4}
domain of sqrt(x+8)
domain\:\sqrt{x+8}
slope ofintercept (-24)m=2.3
slopeintercept\:(-24)m=2.3
asymptotes of x/(x+2)
asymptotes\:\frac{x}{x+2}
midpoint (3.1,-2.1),(-0.52,-0.6)
midpoint\:(3.1,-2.1),(-0.52,-0.6)
range of f(x)=sqrt(1/3 (x-1))
range\:f(x)=\sqrt{\frac{1}{3}(x-1)}
extreme f(x)=y^2=-16x
extreme\:f(x)=y^{2}=-16x
domain of f(x)=(sqrt(x))/(x^2+x-6)
domain\:f(x)=\frac{\sqrt{x}}{x^{2}+x-6}
extreme f(x)=((e^x))/(8+e^x)
extreme\:f(x)=\frac{(e^{x})}{8+e^{x}}
monotone f(x)=3x^4-24x^2+18
monotone\:f(x)=3x^{4}-24x^{2}+18
slope ofintercept y-11=0(x+3)
slopeintercept\:y-11=0(x+3)
inverse of f(x)=(2x-3)/(x^2+1)
inverse\:f(x)=\frac{2x-3}{x^{2}+1}
f(x)=sqrt(x^2+9)
f(x)=\sqrt{x^{2}+9}
inverse of f(x)=(4x+5)/7
inverse\:f(x)=\frac{4x+5}{7}
range of (x+6)/7
range\:\frac{x+6}{7}
slope ofintercept m=0b=12
slopeintercept\:m=0b=12
extreme f(x)=18x^4-108x^2
extreme\:f(x)=18x^{4}-108x^{2}
extreme f(x)=x^2+(160)/x
extreme\:f(x)=x^{2}+\frac{160}{x}
range of f(x)=sin^2(x)
range\:f(x)=\sin^{2}(x)
1
..
317
318
319
320
321
..
1324