domain of f(x)=3x^2-4x-5
|
domain\:f(x)=3x^{2}-4x-5
|
domain of y= x/2+4
|
domain\:y=\frac{x}{2}+4
|
domain of f(x)=4x^3-120x^2+800x
|
domain\:f(x)=4x^{3}-120x^{2}+800x
|
domain of x^2+8x+15
|
domain\:x^{2}+8x+15
|
domain of f(x)=2-5sqrt(x-3)
|
domain\:f(x)=2-5\sqrt{x-3}
|
domain of f(x)=3x\sqrt[3]{(2-x^2)}
|
domain\:f(x)=3x\sqrt[3]{(2-x^{2})}
|
inverse of f(x)=1-1/x
|
inverse\:f(x)=1-\frac{1}{x}
|
domain of 1/2 (x-5)^2
|
domain\:\frac{1}{2}(x-5)^{2}
|
domain of f(x)=sqrt(t+15)
|
domain\:f(x)=\sqrt{t+15}
|
domain of+117x^4-78x^3
|
domain\:+117x^{4}-78x^{3}
|
domain of (2x)/(sqrt(x)-1)
|
domain\:\frac{2x}{\sqrt{x}-1}
|
domain of f(x)=(x+3)/(2x^2+5x+2)
|
domain\:f(x)=\frac{x+3}{2x^{2}+5x+2}
|
domain of ((x+1))/((x^2-13x+42)^{1/2)}
|
domain\:\frac{(x+1)}{(x^{2}-13x+42)^{\frac{1}{2}}}
|
domain of f(θ)=1-cos(θ)
|
domain\:f(θ)=1-\cos(θ)
|
domain of f(x)=(x-2)+sqrt(-2x+5)
|
domain\:f(x)=(x-2)+\sqrt{-2x+5}
|
domain of (10x+7)/(3-8x)
|
domain\:\frac{10x+7}{3-8x}
|
asymptotes of f(x)=2tan(t-(pi)/2)
|
asymptotes\:f(x)=2\tan(t-\frac{\pi}{2})
|
line (5,123),(10,248)
|
line\:(5,123),(10,248)
|
domain of ((sqrt(x+4)))/((sqrt(3x-4)))
|
domain\:\frac{(\sqrt{x+4})}{(\sqrt{3x-4})}
|
domain of f(x)=(x-2)/(x^2-2x-8)
|
domain\:f(x)=\frac{x-2}{x^{2}-2x-8}
|
domain of f(x)=(x^2-7)/(sqrt(x^2+3x-4))
|
domain\:f(x)=\frac{x^{2}-7}{\sqrt{x^{2}+3x-4}}
|
domain of f(x)=(x-8)/(x^2-49)
|
domain\:f(x)=\frac{x-8}{x^{2}-49}
|
domain of f(x)=(3x+9)/(x^2+x-12)
|
domain\:f(x)=\frac{3x+9}{x^{2}+x-12}
|
domain of f(x)=5*sqrt(1-x)-3
|
domain\:f(x)=5\cdot\:\sqrt{1-x}-3
|
domain of (sqrt(2x+1))/(x-5)
|
domain\:\frac{\sqrt{2x+1}}{x-5}
|
domain of ((-3x^2)/2)+(225x)/2
|
domain\:(\frac{-3x^{2}}{2})+\frac{225x}{2}
|
domain of (x^{2/3})^3
|
domain\:(x^{\frac{2}{3}})^{3}
|
asymptotes of f(x)=x+(10)/x
|
asymptotes\:f(x)=x+\frac{10}{x}
|
domain of f(x)= 1/(x^2-81)
|
domain\:f(x)=\frac{1}{x^{2}-81}
|
domain of (2sqrt(-x-1+3))/(x-2)
|
domain\:\frac{2\sqrt{-x-1+3}}{x-2}
|
domain of f(x)=(sqrt(x+7))/(x-9)
|
domain\:f(x)=\frac{\sqrt{x+7}}{x-9}
|
domain of f(x)= 4/(\frac{13){x}-3}
|
domain\:f(x)=\frac{4}{\frac{13}{x}-3}
|
domain of 4a-3
|
domain\:4a-3
|
domain of sqrt((2+x)/(5-x))
|
domain\:\sqrt{\frac{2+x}{5-x}}
|
domain of ln(sqrt(-x^2+2*x-1))
|
domain\:\ln(\sqrt{-x^{2}+2\cdot\:x-1})
|
domain of f(x)=2x^2-2x+b
|
domain\:f(x)=2x^{2}-2x+b
|
midpoint (0,-2)(4,4)
|
midpoint\:(0,-2)(4,4)
|
domain of x^4-8x^3+18x^2
|
domain\:x^{4}-8x^{3}+18x^{2}
|
domain of ((x/(x+4)))/((x/(x+4))+4)
|
domain\:\frac{(\frac{x}{x+4})}{(\frac{x}{x+4})+4}
|
domain of (3x)/4
|
domain\:\frac{3x}{4}
|
domain of f(x)=x+2ln(1+1/x)
|
domain\:f(x)=x+2\ln(1+\frac{1}{x})
|
domain of 3-(x+1)^2
|
domain\:3-(x+1)^{2}
|
domain of y=f(y,x)x=-1x
|
domain\:y=f(y,x)x=-1x
|
domain of y=log_{10}(a)(x)
|
domain\:y=\log_{10}(a)(x)
|
domain of f(x)=(x^2-x)/(-x-4)
|
domain\:f(x)=\frac{x^{2}-x}{-x-4}
|
domain of sqrt((1-x)/(2x-3))
|
domain\:\sqrt{\frac{1-x}{2x-3}}
|
domain of f(x)=|2x-8|
|
domain\:f(x)=|2x-8|
|
domain of h(x)=(sin(x))
|
domain\:h(x)=(\sin(x))
|
domain of (x-6)/(\frac{x-6){x-9}}
|
domain\:\frac{x-6}{\frac{x-6}{x-9}}
|
domain of f(x)=((5x))/((4-x^2))
|
domain\:f(x)=\frac{(5x)}{(4-x^{2})}
|
domain of f(x)=sqrt(4x+44)
|
domain\:f(x)=\sqrt{4x+44}
|
domain of log_{8}(x-8)
|
domain\:\log_{8}(x-8)
|
domain of ln(-x^2+5x-4)
|
domain\:\ln(-x^{2}+5x-4)
|
domain of sqrt(24-(10x-x^2))
|
domain\:\sqrt{24-(10x-x^{2})}
|
domain of ln((4x-8)/(2x+4))
|
domain\:\ln(\frac{4x-8}{2x+4})
|
domain of f(x)=(-1)/(sin(x))
|
domain\:f(x)=\frac{-1}{\sin(x)}
|
inverse of f(x)=x^2+2x>= 0
|
inverse\:f(x)=x^{2}+2x\ge\:0
|
domain of f(x)=(sqrt(1-x))/(sqrt(x-2))
|
domain\:f(x)=\frac{\sqrt{1-x}}{\sqrt{x-2}}
|
domain of f(x)=(x-7)/(x+4)
|
domain\:f(x)=\frac{x-7}{x+4}
|
domain of f(x)=-asqrt(1/4 (x+6))-4
|
domain\:f(x)=-a\sqrt{\frac{1}{4}(x+6)}-4
|
domain of sqrt(4-\sqrt{4-x)}
|
domain\:\sqrt{4-\sqrt{4-x}}
|
domain of f(x)=32(x)-x^2
|
domain\:f(x)=32(x)-x^{2}
|
domain of sqrt((1-x)/x)
|
domain\:\sqrt{\frac{1-x}{x}}
|
domain of y=(x^2-4x+4)/(x^2-4)
|
domain\:y=\frac{x^{2}-4x+4}{x^{2}-4}
|
domain of y=(-8x^3sqrt(x+2))/(ln(-3x+1))
|
domain\:y=\frac{-8x^{3}\sqrt{x+2}}{\ln(-3x+1)}
|
domain of y=(-2-9x)/(x-7)
|
domain\:y=\frac{-2-9x}{x-7}
|
distance (2,2)(1,-3)
|
distance\:(2,2)(1,-3)
|
domain of log_{2}(x+1)-2
|
domain\:\log_{2}(x+1)-2
|
domain of f(x)=log_{x}(1-e^{1-x})
|
domain\:f(x)=\log_{x}(1-e^{1-x})
|
domain of ((x^2-6x-55))/(x^2-3x-28)
|
domain\:\frac{(x^{2}-6x-55)}{x^{2}-3x-28}
|
domain of f(x)=(x^2+5x)/(x^3-13x^2+36x)
|
domain\:f(x)=\frac{x^{2}+5x}{x^{3}-13x^{2}+36x}
|
domain of ((11)/x)/(x+2)
|
domain\:\frac{\frac{11}{x}}{x+2}
|
domain of f(x)=\sqrt[3]{y/(y-5)}
|
domain\:f(x)=\sqrt[3]{\frac{y}{y-5}}
|
domain of f(x)=sqrt((x+4))=0
|
domain\:f(x)=\sqrt{(x+4)}=0
|
domain of ln(-x^2+5x-2)
|
domain\:\ln(-x^{2}+5x-2)
|
domain of log_{2}(x+1)+3
|
domain\:\log_{2}(x+1)+3
|
domain of f(t)=5.5t^2+6t
|
domain\:f(t)=5.5t^{2}+6t
|
inverse of f(x)=(4x)/(x-6)
|
inverse\:f(x)=\frac{4x}{x-6}
|
domain of f(x)=(23)/(13x-31)
|
domain\:f(x)=\frac{23}{13x-31}
|
domain of f(x)=x^3-5x+2
|
domain\:f(x)=x^{3}-5x+2
|
domain of ln(-x^2+5x-3)
|
domain\:\ln(-x^{2}+5x-3)
|
domain of f(x)=(x-7)/(x+6)
|
domain\:f(x)=\frac{x-7}{x+6}
|
domain of f(x)=((x^2+16))/(x^2-9)
|
domain\:f(x)=\frac{(x^{2}+16)}{x^{2}-9}
|
domain of f(x)=2pi-3arccos((1-x^2)/2)
|
domain\:f(x)=2π-3\arccos(\frac{1-x^{2}}{2})
|
domain of f(x)=2\sqrt[3]{x+3}+5
|
domain\:f(x)=2\sqrt[3]{x+3}+5
|
domain of-2x+sqrt(3x+4)
|
domain\:-2x+\sqrt{3x+4}
|
domain of f(x)=(x+1)/(sqrt(x+2)-1)
|
domain\:f(x)=\frac{x+1}{\sqrt{x+2}-1}
|
domain of f(x)=(sqrt(x+a^2-a))/x
|
domain\:f(x)=\frac{\sqrt{x+a^{2}-a}}{x}
|
domain of 3/(x-4)
|
domain\:\frac{3}{x-4}
|
domain of f(x)= 3/(x-2)+10
|
domain\:f(x)=\frac{3}{x-2}+10
|
domain of 3x^3-1
|
domain\:3x^{3}-1
|
domain of f(x)=-6t
|
domain\:f(x)=-6t
|
domain of f(x)=((x-1))/(25-x^2)
|
domain\:f(x)=\frac{(x-1)}{25-x^{2}}
|
domain of f(x)= 7/(7x+1)
|
domain\:f(x)=\frac{7}{7x+1}
|
domain of y= 1/2 sin(2x-2pi)-2
|
domain\:y=\frac{1}{2}\sin(2x-2π)-2
|
domain of f(x)=3^{x+1}+2
|
domain\:f(x)=3^{x+1}+2
|
domain of f(x)=sqrt(arcsin(log_{2)(x))}
|
domain\:f(x)=\sqrt{\arcsin(\log_{2}(x))}
|
parallel y=4x+6,\at (-3,3)
|
parallel\:y=4x+6,\at\:(-3,3)
|
domain of f(x)=3^{x+1}+1
|
domain\:f(x)=3^{x+1}+1
|
domain of (4x+5)+(x+9)
|
domain\:(4x+5)+(x+9)
|