domain of f(x)=(x^2-x)^2
|
domain\:f(x)=(x^{2}-x)^{2}
|
domain of f(x)=(3x-2)/(x^2-1)
|
domain\:f(x)=\frac{3x-2}{x^{2}-1}
|
domain of f(x)=((x-6))/((x^2-5x-6))
|
domain\:f(x)=\frac{(x-6)}{(x^{2}-5x-6)}
|
domain of f(x)=cot(x+pi/6)
|
domain\:f(x)=\cot(x+\frac{π}{6})
|
domain of y,(2,3)
|
domain\:y,(2,3)
|
domain of f(x)=-sqrt(4x+5)+1/(5x^2+2)
|
domain\:f(x)=-\sqrt{4x+5}+\frac{1}{5x^{2}+2}
|
domain of 4/((x-7)^2)
|
domain\:\frac{4}{(x-7)^{2}}
|
inverse of f(x)=ln((2-x)/(x+3))
|
inverse\:f(x)=\ln(\frac{2-x}{x+3})
|
domain of 9*2/3+5
|
domain\:9\cdot\:\frac{2}{3}+5
|
domain of f(t)=ln(sqrt(2t+5))
|
domain\:f(t)=\ln(\sqrt{2t+5})
|
domain of f(x)= 1/2 sin(1/2)(x+pi/4)
|
domain\:f(x)=\frac{1}{2}\sin(\frac{1}{2})(x+\frac{π}{4})
|
domain of sqrt((2ln(x^3+1))/3+1/2)
|
domain\:\sqrt{\frac{2\ln(x^{3}+1)}{3}+\frac{1}{2}}
|
domain of 8/(sqrt(x+3))
|
domain\:\frac{8}{\sqrt{x+3}}
|
domain of f(x)=((6x-7))/(x^2+5x-6)
|
domain\:f(x)=\frac{(6x-7)}{x^{2}+5x-6}
|
domain of f(x)=(3-sqrt(x+1))/(x-8)
|
domain\:f(x)=\frac{3-\sqrt{x+1}}{x-8}
|
domain of 1/2 sqrt(-9x^2-36x)+3
|
domain\:\frac{1}{2}\sqrt{-9x^{2}-36x}+3
|
domain of f(x)=x*log_{10}(sqrt(pi))
|
domain\:f(x)=x\cdot\:\log_{10}(\sqrt{π})
|
domain of f(x)= pi/6-2arcsin(1-2x)
|
domain\:f(x)=\frac{π}{6}-2\arcsin(1-2x)
|
domain of ((x+9))/((x^2-16))
|
domain\:\frac{(x+9)}{(x^{2}-16)}
|
domain of f(x)=(8x^2-10x)/(x^2+2x-8)
|
domain\:f(x)=\frac{8x^{2}-10x}{x^{2}+2x-8}
|
domain of f(x)=(-3x+5)+sqrt(x+4)
|
domain\:f(x)=(-3x+5)+\sqrt{x+4}
|
domain of y= 2/(\frac{11){x+2}+3}
|
domain\:y=\frac{2}{\frac{11}{x+2}+3}
|
domain of f(x)=-3,-5<= x<= 0
|
domain\:f(x)=-3,-5\le\:x\le\:0
|
domain of f(x)=3ln(6x-2)
|
domain\:f(x)=3\ln(6x-2)
|
domain of f(x)=4sqrt(x-3)+3
|
domain\:f(x)=4\sqrt{x-3}+3
|
domain of f(x)=y=cos(-1(3-2x))
|
domain\:f(x)=y=\cos(-1(3-2x))
|
domain of g(x)=-2+log_{2}(x-3)
|
domain\:g(x)=-2+\log_{2}(x-3)
|
domain of f(x)= 4/((2x+7)+3)
|
domain\:f(x)=\frac{4}{(2x+7)+3}
|
intercepts of f(x)=x^4+5x^3-9x^2-45x
|
intercepts\:f(x)=x^{4}+5x^{3}-9x^{2}-45x
|
domain of f(x)=x^2+6x+5
|
domain\:f(x)=x^{2}+6x+5
|
domain of f(x)=log_{e}(9-x^2)
|
domain\:f(x)=\log_{e}(9-x^{2})
|
domain of f(x)=5*sqrt(1-x)-3,x>-8
|
domain\:f(x)=5\cdot\:\sqrt{1-x}-3,x>-8
|
domain of (x-8)^2+5
|
domain\:(x-8)^{2}+5
|
domain of (x^2)/(x^2-x-2)
|
domain\:\frac{x^{2}}{x^{2}-x-2}
|
domain of h(x)=sqrt(-8x+40)
|
domain\:h(x)=\sqrt{-8x+40}
|
domain of f(x)=sqrt(49-x)
|
domain\:f(x)=\sqrt{49-x}
|
domain of (x^3)/(x^2+x-2)
|
domain\:\frac{x^{3}}{x^{2}+x-2}
|
domain of f(x)=x=-3
|
domain\:f(x)=x=-3
|
domain of f(x)=log_{x+1}(2x^2-5x+2)
|
domain\:f(x)=\log_{x+1}(2x^{2}-5x+2)
|
intercepts of f(x)=x^3-4x^2+4x
|
intercepts\:f(x)=x^{3}-4x^{2}+4x
|
domain of y=x^3+x^2-20x
|
domain\:y=x^{3}+x^{2}-20x
|
domain of y=(x^2+1)/(x^2-1)
|
domain\:y=\frac{x^{2}+1}{x^{2}-1}
|
domain of f(x)=sqrt(7+3x)
|
domain\:f(x)=\sqrt{7+3x}
|
domain of f(x)=(3x+1)/(2x^2-7x-4)
|
domain\:f(x)=\frac{3x+1}{2x^{2}-7x-4}
|
domain of f(x)= 6/x x-6
|
domain\:f(x)=\frac{6}{x}x-6
|
domain of sqrt(y)=1-sqrt(x)
|
domain\:\sqrt{y}=1-\sqrt{x}
|
domain of f(x)=((x+1)^3)/((x-3)^2)
|
domain\:f(x)=\frac{(x+1)^{3}}{(x-3)^{2}}
|
domain of f(x)=-2*(0.5)^x
|
domain\:f(x)=-2\cdot\:(0.5)^{x}
|
domain of (x+1)/(x+2/3)
|
domain\:\frac{x+1}{x+\frac{2}{3}}
|
domain of f(x)= x/(1-9x)
|
domain\:f(x)=\frac{x}{1-9x}
|
domain of 2sin(pi/2 x+3)
|
domain\:2\sin(\frac{π}{2}x+3)
|
domain of (x^2+x-56)/(x^2-5x-14)
|
domain\:\frac{x^{2}+x-56}{x^{2}-5x-14}
|
domain of-1/(x+6)
|
domain\:-\frac{1}{x+6}
|
domain of f(x)=sin(x)-ln(x)
|
domain\:f(x)=\sin(x)-\ln(x)
|
domain of f(x)=sqrt(x-2)(3x^2-7x+5)/(sqrt(9-x^2))
|
domain\:f(x)=\sqrt{x-2}\frac{3x^{2}-7x+5}{\sqrt{9-x^{2}}}
|
domain of ((x^2+2x)/(x^2+7))^{5x}
|
domain\:(\frac{x^{2}+2x}{x^{2}+7})^{5x}
|
domain of-4^x
|
domain\:-4^{x}
|
domain of ((x-20))/(-0.025)
|
domain\:\frac{(x-20)}{-0.025}
|
domain of y=3x+4
|
domain\:y=3x+4
|
domain of f(x)=(sin(x))/(x-4)
|
domain\:f(x)=\frac{\sin(x)}{x-4}
|
inverse of f(x)=9x-9
|
inverse\:f(x)=9x-9
|
domain of (sqrt(1-2x))/(sqrt(3-2x-x^2))
|
domain\:\frac{\sqrt{1-2x}}{\sqrt{3-2x-x^{2}}}
|
domain of y=sqrt((4x)/(6x^2+13x-5))
|
domain\:y=\sqrt{\frac{4x}{6x^{2}+13x-5}}
|
domain of f(x)=sqrt(x)+sqrt(1+x)
|
domain\:f(x)=\sqrt{x}+\sqrt{1+x}
|
domain of g(x)=(sqrt(2+x))/(1-x)
|
domain\:g(x)=\frac{\sqrt{2+x}}{1-x}
|
domain of 1/(sqrt(x+4)-3)
|
domain\:\frac{1}{\sqrt{x+4}-3}
|
domain of f(x)=4sqrt(x-6)
|
domain\:f(x)=4\sqrt{x-6}
|
domain of f(x)=log_{3}(1/(x-2))
|
domain\:f(x)=\log_{3}(\frac{1}{x-2})
|
domain of f(x)=f(x)= 2/x
|
domain\:f(x)=f(x)=\frac{2}{x}
|
domain of cos(arctan(x))
|
domain\:\cos(\arctan(x))
|
extreme points of (x^2-1)e^{-2x}
|
extreme\:points\:(x^{2}-1)e^{-2x}
|
domain of (4-x^2)/(x^2+x)
|
domain\:\frac{4-x^{2}}{x^{2}+x}
|
domain of f(x)=2*e^{x^2-4x}
|
domain\:f(x)=2\cdot\:e^{x^{2}-4x}
|
domain of x^2+14x+7
|
domain\:x^{2}+14x+7
|
domain of f(x)=(4x+8)/(x-1)
|
domain\:f(x)=\frac{4x+8}{x-1}
|
domain of f(x)=-sqrt(x^2+1)
|
domain\:f(x)=-\sqrt{x^{2}+1}
|
domain of (3x)/(5+4x)
|
domain\:\frac{3x}{5+4x}
|
domain of 2+(x-1)^{1/3}
|
domain\:2+(x-1)^{\frac{1}{3}}
|
domain of (4x+1)/(2x)
|
domain\:\frac{4x+1}{2x}
|
domain of-1/3
|
domain\:-\frac{1}{3}
|
domain of f(x)=log_{10}(2)(x+9)
|
domain\:f(x)=\log_{10}(2)(x+9)
|
critical points of f(x)=3+4x^2-1/2 x^4
|
critical\:points\:f(x)=3+4x^{2}-\frac{1}{2}x^{4}
|
domain of f(x)=(x+4)/(x^2+3x-10)
|
domain\:f(x)=\frac{x+4}{x^{2}+3x-10}
|
domain of f(x)=-3x+5,-2<x<3
|
domain\:f(x)=-3x+5,-2<x<3
|
domain of x^2+2x+5
|
domain\:x^{2}+2x+5
|
domain of x^2-6x+3
|
domain\:x^{2}-6x+3
|
domain of x^2-6x+4
|
domain\:x^{2}-6x+4
|
domain of y=(e^x)/(x^2-3x+2)
|
domain\:y=\frac{e^{x}}{x^{2}-3x+2}
|
domain of sqrt(20-(x^2-x))
|
domain\:\sqrt{20-(x^{2}-x)}
|
domain of f(x)=sqrt(x+9)+8
|
domain\:f(x)=\sqrt{x+9}+8
|
domain of (5-5y)/2
|
domain\:\frac{5-5y}{2}
|
domain of f(x)=ln(6x-9)
|
domain\:f(x)=\ln(6x-9)
|
slope intercept of 4x+5y=-30
|
slope\:intercept\:4x+5y=-30
|
domain of f(x)=-1/2 (y-5)^2+9
|
domain\:f(x)=-\frac{1}{2}(y-5)^{2}+9
|
domain of f(x)=arccos(sqrt(-2x^2+3))
|
domain\:f(x)=\arccos(\sqrt{-2x^{2}+3})
|
domain of f(x)=(sqrt(3x+4))(2x^2+3x)
|
domain\:f(x)=(\sqrt{3x+4})(2x^{2}+3x)
|
domain of f(x)=sqrt((x+3)/2)+x/(x-3)
|
domain\:f(x)=\sqrt{\frac{x+3}{2}}+\frac{x}{x-3}
|
domain of-1/(sqrt(x+3))
|
domain\:-\frac{1}{\sqrt{x+3}}
|
domain of f(x)=(x(x+8))/(9(x-5))
|
domain\:f(x)=\frac{x(x+8)}{9(x-5)}
|
domain of f(x)=(-1)/(x+2)
|
domain\:f(x)=\frac{-1}{x+2}
|