Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of f(x)=-1/(x-1)+3
inverse\:f(x)=-\frac{1}{x-1}+3
inverse of f(x)=5x^2-3
inverse\:f(x)=5x^{2}-3
domain of y=sin(e^{-x})
domain\:y=\sin(e^{-x})
range of (3x-1)/(x+2)
range\:\frac{3x-1}{x+2}
asymptotes of f(x)=(x-2)/(3x^2-36x-60)
asymptotes\:f(x)=\frac{x-2}{3x^{2}-36x-60}
critical x^2-5x+2
critical\:x^{2}-5x+2
domain of sqrt(x)+sqrt(4-x)
domain\:\sqrt{x}+\sqrt{4-x}
extreme (e^x-e^{-x})/8
extreme\:\frac{e^{x}-e^{-x}}{8}
domain of (x^2+6)/2
domain\:\frac{x^{2}+6}{2}
range of f(x)=2sqrt(x+3)-5
range\:f(x)=2\sqrt{x+3}-5
range of f(x)= 1/(x-7)
range\:f(x)=\frac{1}{x-7}
extreme f(x)=x^2+4x+8
extreme\:f(x)=x^{2}+4x+8
line (2,3),(3,3)
line\:(2,3),(3,3)
inverse of f(x)=(9x)/7
inverse\:f(x)=\frac{9x}{7}
domain of f(x)=(2x)/(\sqrt[3]{x)}
domain\:f(x)=\frac{2x}{\sqrt[3]{x}}
domain of f(x)=sqrt(16-t)
domain\:f(x)=\sqrt{16-t}
inverse of f(x)=(e^{x^8})/2
inverse\:f(x)=\frac{e^{x^{8}}}{2}
asymptotes of (x+1)/((x+2)^2)
asymptotes\:\frac{x+1}{(x+2)^{2}}
intercepts of f(x)=1-x^2
intercepts\:f(x)=1-x^{2}
line (1,2),(10,5)
line\:(1,2),(10,5)
domain of f(x)=sqrt(-x^2-4x+12)
domain\:f(x)=\sqrt{-x^{2}-4x+12}
extreme f(x)= x/(x-8)
extreme\:f(x)=\frac{x}{x-8}
intercepts of f(x)=x^2-3x+4=x-2
intercepts\:f(x)=x^{2}-3x+4=x-2
perpendicular 3x-4y=15
perpendicular\:3x-4y=15
domain of f(x)=(sqrt(7-x))/(x^2+1)
domain\:f(x)=\frac{\sqrt{7-x}}{x^{2}+1}
domain of 1/(x^2+4)
domain\:\frac{1}{x^{2}+4}
parity sqrt(2-3/x)
parity\:\sqrt{2-\frac{3}{x}}
extreme f(x)=x^6e^x-3
extreme\:f(x)=x^{6}e^{x}-3
domain of y=(x^3)/((x-1)^2)
domain\:y=\frac{x^{3}}{(x-1)^{2}}
range of f(x)= 6/(x^2-64)
range\:f(x)=\frac{6}{x^{2}-64}
critical 4^x+2
critical\:4^{x}+2
domain of f(x)=-2x+4
domain\:f(x)=-2x+4
intercepts of y=2x^2+x-1
intercepts\:y=2x^{2}+x-1
intercepts of (x^2+5x+4)/(x^2+15x+56)
intercepts\:\frac{x^{2}+5x+4}{x^{2}+15x+56}
extreme (x^2)/(x^2-1)
extreme\:\frac{x^{2}}{x^{2}-1}
intercepts of f(x)=6x-4
intercepts\:f(x)=6x-4
intercepts of (-x^2+100)/((x^2+100)^2)
intercepts\:\frac{-x^{2}+100}{(x^{2}+100)^{2}}
intercepts of f(x)=(x^2+4x+3)/(x+1)
intercepts\:f(x)=\frac{x^{2}+4x+3}{x+1}
domain of f(x)=(sqrt(4+x))/(5-x)
domain\:f(x)=\frac{\sqrt{4+x}}{5-x}
inverse of f(x)=(2x+3)/(1-5x)
inverse\:f(x)=\frac{2x+3}{1-5x}
slope ofintercept 5x-3y=-15
slopeintercept\:5x-3y=-15
domain of f(x)=(sqrt(x-3))/(x-5)
domain\:f(x)=\frac{\sqrt{x-3}}{x-5}
extreme x+sin(x)
extreme\:x+\sin(x)
inverse of f(x)= 3/2 x^4
inverse\:f(x)=\frac{3}{2}x^{4}
line (-8,-4),(6,5)
line\:(-8,-4),(6,5)
simplify (-3.6)(10)
simplify\:(-3.6)(10)
extreme f(x)=0.5x^2-3x+5
extreme\:f(x)=0.5x^{2}-3x+5
domain of 2(1/2)^x
domain\:2(\frac{1}{2})^{x}
range of 9+(8+x)^{1/2}
range\:9+(8+x)^{\frac{1}{2}}
asymptotes of f(x)=-x/(x-1)
asymptotes\:f(x)=-\frac{x}{x-1}
inverse of y=x^2+x+1
inverse\:y=x^{2}+x+1
domain of f(x)= x/(9x+64)
domain\:f(x)=\frac{x}{9x+64}
domain of 7x+1
domain\:7x+1
range of sqrt(6x^3+8x^2)
range\:\sqrt{6x^{3}+8x^{2}}
simplify (-1.2)(-7)
simplify\:(-1.2)(-7)
range of |x-5|
range\:\left|x-5\right|
inverse of f(x)=7x-14
inverse\:f(x)=7x-14
domain of f(x)=3x^3+x/2-\sqrt[3]{x-3}
domain\:f(x)=3x^{3}+\frac{x}{2}-\sqrt[3]{x-3}
slope ofintercept 3x+8y=15
slopeintercept\:3x+8y=15
range of f(x)=2^{x+1}
range\:f(x)=2^{x+1}
parity x^2+4
parity\:x^{2}+4
critical y=x^2-6x+7
critical\:y=x^{2}-6x+7
domain of g(x)=(5x)/(x^2-36)
domain\:g(x)=\frac{5x}{x^{2}-36}
domain of f(x)=sqrt(5x-8)
domain\:f(x)=\sqrt{5x-8}
slope ofintercept 9x+6y=36
slopeintercept\:9x+6y=36
slope ofintercept 4x-2y=14
slopeintercept\:4x-2y=14
domain of f(x)= x/(1-ln(x-2))
domain\:f(x)=\frac{x}{1-\ln(x-2)}
parallel 2x+12y=48
parallel\:2x+12y=48
domain of-4x^2+6x-1
domain\:-4x^{2}+6x-1
slope ofintercept 4x+4y=4
slopeintercept\:4x+4y=4
parity f(x)=(2x)/(1-sin^2(x))
parity\:f(x)=\frac{2x}{1-\sin^{2}(x)}
inverse of (x-2)^3
inverse\:(x-2)^{3}
inverse of f(x)=10^{1.9}
inverse\:f(x)=10^{1.9}
distance (6,2),(4,4)
distance\:(6,2),(4,4)
inverse of f(x)=100-4y
inverse\:f(x)=100-4y
asymptotes of f(x)=(x+4)/(x-6)
asymptotes\:f(x)=\frac{x+4}{x-6}
perpendicular 9=3y-6x,(4,-8)
perpendicular\:9=3y-6x,(4,-8)
shift sin(x)+8
shift\:\sin(x)+8
inverse of y=3x-3
inverse\:y=3x-3
domain of f(x)=11x-9
domain\:f(x)=11x-9
f(x)=x^4-4x^2
f(x)=x^{4}-4x^{2}
inverse of f(x)=13x^3-1
inverse\:f(x)=13x^{3}-1
inverse of f(x)= 1/(4x)
inverse\:f(x)=\frac{1}{4x}
range of |x|-5
range\:\left|x\right|-5
slope of 5x-3y=-15
slope\:5x-3y=-15
domain of f(x)=(3x)/(x^2-9)
domain\:f(x)=\frac{3x}{x^{2}-9}
inverse of f(x)=(x-1)/(x-3)
inverse\:f(x)=\frac{x-1}{x-3}
domain of f(x)=-\sqrt[4]{x}
domain\:f(x)=-\sqrt[4]{x}
inverse of f(x)= 4/(x-2)
inverse\:f(x)=\frac{4}{x-2}
range of 1/(sqrt(x^2-9x+14))
range\:\frac{1}{\sqrt{x^{2}-9x+14}}
range of y=(x^3)/((x-1)^2)
range\:y=\frac{x^{3}}{(x-1)^{2}}
parallel x=-9x,(6,-1)
parallel\:x=-9x,(6,-1)
midpoint (-3/2 ,-3),(2, 7/2)
midpoint\:(-\frac{3}{2},-3),(2,\frac{7}{2})
distance (0,1),(2,0)
distance\:(0,1),(2,0)
extreme f(x)=1-x^2
extreme\:f(x)=1-x^{2}
domain of f(x)=(30x^2)/((4-5x^3)^3)
domain\:f(x)=\frac{30x^{2}}{(4-5x^{3})^{3}}
domain of f(x)=(sqrt(x+2))/(x-2)
domain\:f(x)=\frac{\sqrt{x+2}}{x-2}
critical f(x)=(10(t-4))/((t+2)^4)
critical\:f(x)=\frac{10(t-4)}{(t+2)^{4}}
range of 10-sqrt(x+100)
range\:10-\sqrt{x+100}
critical 2x^2+4x-3
critical\:2x^{2}+4x-3
1
..
295
296
297
298
299
..
839