domain of (5x-7)/(x+8)
|
domain\:\frac{5x-7}{x+8}
|
domain of (x^2-9)/(4x+8)
|
domain\:\frac{x^{2}-9}{4x+8}
|
domain of (x+2)/(x^2)
|
domain\:\frac{x+2}{x^{2}}
|
domain of f(x)= 5/(sqrt(x+8))
|
domain\:f(x)=\frac{5}{\sqrt{x+8}}
|
domain of f(x)=((2x^2-x-3))/((2x^2+2x))
|
domain\:f(x)=\frac{(2x^{2}-x-3)}{(2x^{2}+2x)}
|
domain of f(x)= 2/(x+9)
|
domain\:f(x)=\frac{2}{x+9}
|
domain of f(x)=3x^2-25x+42
|
domain\:f(x)=3x^{2}-25x+42
|
domain of-5/(2sqrt(3+5x))
|
domain\:-\frac{5}{2\sqrt{3+5x}}
|
domain of f(x)=sqrt(15+2x)
|
domain\:f(x)=\sqrt{15+2x}
|
domain of y=(2x^2-3)/(x^2+1)
|
domain\:y=\frac{2x^{2}-3}{x^{2}+1}
|
domain of f(x)=(2x^2+x+3)/(x^2-x-6)
|
domain\:f(x)=\frac{2x^{2}+x+3}{x^{2}-x-6}
|
domain of f(x)=log_{8}(x^2-2x-48)
|
domain\:f(x)=\log_{8}(x^{2}-2x-48)
|
inverse of f(x)= 1/(4pi)
|
inverse\:f(x)=\frac{1}{4\pi}
|
domain of ln(|(x+2)/(x-1)|)
|
domain\:\ln(\left|\frac{x+2}{x-1}\right|)
|
domain of r(x)=(x+2)/(x^2-3x-28)
|
domain\:r(x)=\frac{x+2}{x^{2}-3x-28}
|
domain of f(x)=(9x)/(|x|)
|
domain\:f(x)=\frac{9x}{\left|x\right|}
|
domain of f(x)=ln(6x-6)
|
domain\:f(x)=\ln(6x-6)
|
domain of 3x^2*sqrt(x+7)
|
domain\:3x^{2}\cdot\:\sqrt{x+7}
|
domain of f(x)= x/(sqrt(x^2-2x))
|
domain\:f(x)=\frac{x}{\sqrt{x^{2}-2x}}
|
domain of f(x)=ln(2-e^x)-2x
|
domain\:f(x)=\ln(2-e^{x})-2x
|
domain of f(x)=-(x-3)^2+3
|
domain\:f(x)=-(x-3)^{2}+3
|
domain of y=((x+2))/((x-2))
|
domain\:y=\frac{(x+2)}{(x-2)}
|
intercepts of (-2x+6)/(x^2-9)
|
intercepts\:\frac{-2x+6}{x^{2}-9}
|
domain of (5x+2)/(x^2-4)
|
domain\:\frac{5x+2}{x^{2}-4}
|
domain of f(x)=d=(4300x)/(x^2+40)
|
domain\:f(x)=d=\frac{4300x}{x^{2}+40}
|
domain of f(x)=(x^2-2)/(2x^2-1)
|
domain\:f(x)=\frac{x^{2}-2}{2x^{2}-1}
|
domain of f(x)=log_{3}(1-x)-3
|
domain\:f(x)=\log_{3}(1-x)-3
|
domain of f(x)=((x-3))/(x^2+6x+9)
|
domain\:f(x)=\frac{(x-3)}{x^{2}+6x+9}
|
domain of \sqrt[3]{x^2-x^3}
|
domain\:\sqrt[3]{x^{2}-x^{3}}
|
domain of cosh(t)
|
domain\:\cosh(t)
|
domain of (x-4)/(4x)
|
domain\:\frac{x-4}{4x}
|
domain of f(x)=y=20x
|
domain\:f(x)=y=20x
|
domain of f(x)= 1/t sqrt(t+1)
|
domain\:f(x)=\frac{1}{t}\sqrt{t+1}
|
extreme points of f(x)=(6+x)/(6-x)
|
extreme\:points\:f(x)=\frac{6+x}{6-x}
|
midpoint (-2,1)(-20,9)
|
midpoint\:(-2,1)(-20,9)
|
domain of f(x)=sec(5x+pi)
|
domain\:f(x)=\sec(5x+π)
|
domain of f(x)=(|x-1|)/(x-1)x^2
|
domain\:f(x)=\frac{\left|x-1\right|}{x-1}x^{2}
|
domain of f(x)=(x^2)/9+((y-5)^2)/(25)=1
|
domain\:f(x)=\frac{x^{2}}{9}+\frac{(y-5)^{2}}{25}=1
|
domain of+(-3)x+3
|
domain\:+(-3)x+3
|
domain of f(x)=sqrt((x^2-4)(x+6))
|
domain\:f(x)=\sqrt{(x^{2}-4)(x+6)}
|
domain of x(160-x)
|
domain\:x(160-x)
|
domain of 9-(x-1)^2
|
domain\:9-(x-1)^{2}
|
domain of f(x)=(sqrt(2-x))/(x+7)
|
domain\:f(x)=\frac{\sqrt{2-x}}{x+7}
|
domain of-2log_{10}(-2x)-2
|
domain\:-2\log_{10}(-2x)-2
|
midpoint (4,8)(10,6)
|
midpoint\:(4,8)(10,6)
|
domain of f(x)=(x-7)/(x^2-4)
|
domain\:f(x)=\frac{x-7}{x^{2}-4}
|
domain of 3x^2+16x-35
|
domain\:3x^{2}+16x-35
|
domain of f(x)=sqrt((\sqrt{x+1)-x)/x}
|
domain\:f(x)=\sqrt{\frac{\sqrt{x+1}-x}{x}}
|
domain of f(x)= x/(1-6x)
|
domain\:f(x)=\frac{x}{1-6x}
|
domain of 3/(x-7)
|
domain\:\frac{3}{x-7}
|
domain of f(x)=-4x^2+6
|
domain\:f(x)=-4x^{2}+6
|
domain of (5x+6)+(1-8x)x
|
domain\:(5x+6)+(1-8x)x
|
domain of f(x)=(x-7)/(x^2-1)
|
domain\:f(x)=\frac{x-7}{x^{2}-1}
|
domain of sqrt(1+8)
|
domain\:\sqrt{1+8}
|
domain of f(x)=e^{t-3}
|
domain\:f(x)=e^{t-3}
|
domain of y=(x^4+x^2+8)/(x^3-8x)
|
domain\:y=\frac{x^{4}+x^{2}+8}{x^{3}-8x}
|
domain of f(x)=((x^2))/(sqrt(x^4+2))
|
domain\:f(x)=\frac{(x^{2})}{\sqrt{x^{4}+2}}
|
domain of f(x)=ln(13x)
|
domain\:f(x)=\ln(13x)
|
domain of f(x)=(1/((x+1)))/(x^2-4)
|
domain\:f(x)=\frac{\frac{1}{(x+1)}}{x^{2}-4}
|
domain of f(x)=x^3-2x^2
|
domain\:f(x)=x^{3}-2x^{2}
|
domain of sqrt(x+2)-8
|
domain\:\sqrt{x+2}-8
|
domain of f(x)=((t+2))/(15-t)
|
domain\:f(x)=\frac{(t+2)}{15-t}
|
domain of sqrt(x-3)-sqrt(x^2+4)
|
domain\:\sqrt{x-3}-\sqrt{x^{2}+4}
|
extreme points of f(x)=((x+1))/x
|
extreme\:points\:f(x)=\frac{(x+1)}{x}
|
domain of f(x)= 1/(48x^4-72x^2+29)
|
domain\:f(x)=\frac{1}{48x^{4}-72x^{2}+29}
|
domain of 64pir^3+120pi^3r
|
domain\:64πr^{3}+120π^{3}r
|
domain of (5x)/(-9x+6)
|
domain\:\frac{5x}{-9x+6}
|
domain of f(x)=-log_{10}(3x-4)+4
|
domain\:f(x)=-\log_{10}(3x-4)+4
|
domain of y=(x-3)^2
|
domain\:y=(x-3)^{2}
|
domain of k(x)=2x^2-3x+2
|
domain\:k(x)=2x^{2}-3x+2
|
domain of f(x)=sqrt(x/(x-1))+sqrt(x-x^3)
|
domain\:f(x)=\sqrt{\frac{x}{x-1}}+\sqrt{x-x^{3}}
|
domain of 7(7x+3)+3
|
domain\:7(7x+3)+3
|
domain of f(x)=\sqrt[3]{e^x-27}
|
domain\:f(x)=\sqrt[3]{e^{x}-27}
|
slope of V
|
slope\:V
|
domain of f(x)=(2x)/(x^3-6)
|
domain\:f(x)=\frac{2x}{x^{3}-6}
|
domain of (y/(y-2))^{1/3}
|
domain\:(\frac{y}{y-2})^{\frac{1}{3}}
|
domain of f(x)=25x^2+40x+16
|
domain\:f(x)=25x^{2}+40x+16
|
domain of (4x)/(x^2-9)
|
domain\:\frac{4x}{x^{2}-9}
|
domain of e^{5x+3}+2
|
domain\:e^{5x+3}+2
|
domain of f(x)= 3/(sqrt(x+1)-2)
|
domain\:f(x)=\frac{3}{\sqrt{x+1}-2}
|
domain of f(x)=(e^{1/x})^3
|
domain\:f(x)=(e^{\frac{1}{x}})^{3}
|
domain of f(x)=(sqrt(9-x^2))^2-9
|
domain\:f(x)=(\sqrt{9-x^{2}})^{2}-9
|
domain of 2arcsin(3x+1)-pi/2
|
domain\:2\arcsin(3x+1)-\frac{π}{2}
|
perpendicular y=-5/2 x-6
|
perpendicular\:y=-\frac{5}{2}x-6
|
domain of y=(x-4)/(x^2)
|
domain\:y=\frac{x-4}{x^{2}}
|
domain of 8x^4-14x^3-9x^2+11x-1
|
domain\:8x^{4}-14x^{3}-9x^{2}+11x-1
|
domain of 6x^3-5x^2-6x
|
domain\:6x^{3}-5x^{2}-6x
|
domain of log_{10}(x^2-9)
|
domain\:\log_{10}(x^{2}-9)
|
domain of (x+7)/(x-2)
|
domain\:\frac{x+7}{x-2}
|
domain of (3+x)^2
|
domain\:(3+x)^{2}
|
domain of f(x)=-3x+cos^2(x)
|
domain\:f(x)=-3x+\cos^{2}(x)
|
domain of f(x)=2sqrt(x+2)-5
|
domain\:f(x)=2\sqrt{x+2}-5
|
domain of g(x)=3x^2
|
domain\:g(x)=3x^{2}
|
domain of 46/38
|
domain\:\frac{46}{38}
|
domain of f(x)=sqrt(25-(x+7)^2),x<=-2
|
domain\:f(x)=\sqrt{25-(x+7)^{2}},x\le\:-2
|
domain of (x^2+3x-10)/(x^2+8x+15)
|
domain\:\frac{x^{2}+3x-10}{x^{2}+8x+15}
|
domain of f(x)=2022
|
domain\:f(x)=2022
|
domain of ((x))^2
|
domain\:((x))^{2}
|
domain of (5x)/(6x-7)
|
domain\:\frac{5x}{6x-7}
|
domain of x^3-2x+x^2
|
domain\:x^{3}-2x+x^{2}
|