domain of y=((x^3-x^2+x))/x
|
domain\:y=\frac{(x^{3}-x^{2}+x)}{x}
|
domain of (x+2)/(x^2-3x-28)
|
domain\:\frac{x+2}{x^{2}-3x-28}
|
domain of ((x+1)^{-1})/(x-2)
|
domain\:\frac{(x+1)^{-1}}{x-2}
|
domain of f(x)= 2/((x^2-6x+8))
|
domain\:f(x)=\frac{2}{(x^{2}-6x+8)}
|
domain of f(x)= 9/(2x+1)
|
domain\:f(x)=\frac{9}{2x+1}
|
domain of y= 1/(sqrt(2x^2-3x+4))
|
domain\:y=\frac{1}{\sqrt{2x^{2}-3x+4}}
|
domain of f(x)=\sqrt[3]{y/(y-2)}
|
domain\:f(x)=\sqrt[3]{\frac{y}{y-2}}
|
domain of (x^2-3)/(x^2+1)
|
domain\:\frac{x^{2}-3}{x^{2}+1}
|
domain of y=log_{10}(2x)
|
domain\:y=\log_{10}(2x)
|
perpendicular y=3x,\at (2,6)
|
perpendicular\:y=3x,\at\:(2,6)
|
domain of f(x)=ln((4-x)/(2+2x))
|
domain\:f(x)=\ln(\frac{4-x}{2+2x})
|
domain of f(x)=\sqrt[3]{x^2+1}
|
domain\:f(x)=\sqrt[3]{x^{2}+1}
|
domain of 2-x/2
|
domain\:2-\frac{x}{2}
|
domain of f(x)=2arcsin(x/2-1)+pi
|
domain\:f(x)=2\arcsin(\frac{x}{2}-1)+π
|
domain of f(x)=(x^4)/(x^2-x-6)
|
domain\:f(x)=\frac{x^{4}}{x^{2}-x-6}
|
domain of f(x)=(4x+5)/(sqrt(x^2-7))
|
domain\:f(x)=\frac{4x+5}{\sqrt{x^{2}-7}}
|
domain of f(x)=x^4+5
|
domain\:f(x)=x^{4}+5
|
domain of f(x)=x^2+x+4
|
domain\:f(x)=x^{2}+x+4
|
domain of y=log_{10}(4-6x)
|
domain\:y=\log_{10}(4-6x)
|
domain of f(x)=ln(((x-1))/((x-2)))
|
domain\:f(x)=\ln(\frac{(x-1)}{(x-2)})
|
slope intercept of x-3y=6
|
slope\:intercept\:x-3y=6
|
domain of q(x)=(x-3)/(x^2+x-12)
|
domain\:q(x)=\frac{x-3}{x^{2}+x-12}
|
domain of (x^2-4x+4)/(x^4-8x^2+16)
|
domain\:\frac{x^{2}-4x+4}{x^{4}-8x^{2}+16}
|
domain of f(x)=sqrt(10-9x)
|
domain\:f(x)=\sqrt{10-9x}
|
domain of f(x)=-(12)/(2x-9)
|
domain\:f(x)=-\frac{12}{2x-9}
|
domain of f(x)=-3(x^2+5)
|
domain\:f(x)=-3(x^{2}+5)
|
domain of g(x)=(x^2)/((x-3)(x+4)(x+1))
|
domain\:g(x)=\frac{x^{2}}{(x-3)(x+4)(x+1)}
|
domain of g(x)= 9/(sqrt(x-3))
|
domain\:g(x)=\frac{9}{\sqrt{x-3}}
|
domain of f(x)=(sqrt(2+x)+x^2)/(5-2x)
|
domain\:f(x)=\frac{\sqrt{2+x}+x^{2}}{5-2x}
|
domain of (x^2+1)/(x^4+3x^2+1)
|
domain\:\frac{x^{2}+1}{x^{4}+3x^{2}+1}
|
domain of f(x)=(x^2)/(x^2+x-2)
|
domain\:f(x)=\frac{x^{2}}{x^{2}+x-2}
|
domain of f(x)=(sqrt(9+x))/(4-x)
|
domain\:f(x)=\frac{\sqrt{9+x}}{4-x}
|
domain of x^4e^{-x}
|
domain\:x^{4}e^{-x}
|
domain of f(x)=((x-1)(x^2+4))/(x(x+1))
|
domain\:f(x)=\frac{(x-1)(x^{2}+4)}{x(x+1)}
|
domain of (8+2x)/(x+7)+log_{10}(24-2x)
|
domain\:\frac{8+2x}{x+7}+\log_{10}(24-2x)
|
domain of (x^2+3x+1)/(3x-6)
|
domain\:\frac{x^{2}+3x+1}{3x-6}
|
domain of y=sqrt(8-3x)
|
domain\:y=\sqrt{8-3x}
|
domain of sqrt(-x^2-6x+8)
|
domain\:\sqrt{-x^{2}-6x+8}
|
domain of f(x)= 1/(log_{10)(x)+1}
|
domain\:f(x)=\frac{1}{\log_{10}(x)+1}
|
domain of f(x)=-2x+5,-2<= x<= 2
|
domain\:f(x)=-2x+5,-2\le\:x\le\:2
|
domain of f(x)=2sqrt(2x+4)
|
domain\:f(x)=2\sqrt{2x+4}
|
domain of f(x)= 1/(sqrt(11-x))
|
domain\:f(x)=\frac{1}{\sqrt{11-x}}
|
range of (3x)/(x-1)
|
range\:\frac{3x}{x-1}
|
domain of f(x)=2500+100x
|
domain\:f(x)=2500+100x
|
domain of f(x)=(x-2)^{-1}
|
domain\:f(x)=(x-2)^{-1}
|
domain of (x^2-2x+4)/(x-2)
|
domain\:\frac{x^{2}-2x+4}{x-2}
|
domain of sqrt(2ln(x-1))
|
domain\:\sqrt{2\ln(x-1)}
|
domain of f(x)=x^2-2x,x>= 1
|
domain\:f(x)=x^{2}-2x,x\ge\:1
|
domain of 5x^2+4
|
domain\:5x^{2}+4
|
domain of f(x)=(7x+1)/(2x^2+3x)
|
domain\:f(x)=\frac{7x+1}{2x^{2}+3x}
|
domain of 2x^2-24x+64
|
domain\:2x^{2}-24x+64
|
domain of f(x)=3-((13)/(x^2+5))
|
domain\:f(x)=3-(\frac{13}{x^{2}+5})
|
domain of f(x)=(8-x)/(x+3)
|
domain\:f(x)=\frac{8-x}{x+3}
|
domain of f(x)=(x+6)/(sqrt(x^2-3x-4))
|
domain\:f(x)=\frac{x+6}{\sqrt{x^{2}-3x-4}}
|
domain of sqrt(1/(x^2)-1)
|
domain\:\sqrt{\frac{1}{x^{2}}-1}
|
domain of f(x)=(-3x)/(x-1)
|
domain\:f(x)=\frac{-3x}{x-1}
|
domain of f(x)=sqrt((-x^2+4)/(-x))
|
domain\:f(x)=\sqrt{\frac{-x^{2}+4}{-x}}
|
domain of f(x)=81x
|
domain\:f(x)=81x
|
domain of y=(x^3)/8-x/6+cx^{-5}
|
domain\:y=\frac{x^{3}}{8}-\frac{x}{6}+cx^{-5}
|
domain of f(x)= 2/(4x-1)
|
domain\:f(x)=\frac{2}{4x-1}
|
domain of f(x)=(5-2x)/(4x-2)
|
domain\:f(x)=\frac{5-2x}{4x-2}
|
domain of f(x)=sqrt(-5x^2+4)
|
domain\:f(x)=\sqrt{-5x^{2}+4}
|
domain of f(x)= 2/(4x-6)
|
domain\:f(x)=\frac{2}{4x-6}
|
domain of f(x)=(5-2x)/(4x-1)
|
domain\:f(x)=\frac{5-2x}{4x-1}
|
domain of 2csc(1/3 (x-1))-2
|
domain\:2\csc(\frac{1}{3}(x-1))-2
|
slope intercept of y=2x-1
|
slope\:intercept\:y=2x-1
|
asymptotes of f(x)=0.2(x-2)(x+1)(x-5)
|
asymptotes\:f(x)=0.2(x-2)(x+1)(x-5)
|
domain of-2x^2+14x-7
|
domain\:-2x^{2}+14x-7
|
domain of f(x)=-7/((3+x)^2)
|
domain\:f(x)=-\frac{7}{(3+x)^{2}}
|
domain of-|x+4|-x
|
domain\:-\left|x+4\right|-x
|
domain of-3sin(2x)-4
|
domain\:-3\sin(2x)-4
|
domain of (sqrt(x-4))/(x-8)
|
domain\:\frac{\sqrt{x-4}}{x-8}
|
domain of (4-x)/(2x-3)
|
domain\:\frac{4-x}{2x-3}
|
domain of f(x)=(x-4)/(x^2-11x+28)
|
domain\:f(x)=\frac{x-4}{x^{2}-11x+28}
|
domain of f(x)=sqrt(2-(3x+11)/(x+5))
|
domain\:f(x)=\sqrt{2-\frac{3x+11}{x+5}}
|
domain of (x-2)/(x^2+4)
|
domain\:\frac{x-2}{x^{2}+4}
|
midpoint (-3,4)(0,-3)
|
midpoint\:(-3,4)(0,-3)
|
domain of 3sin(-4x-pi)-5
|
domain\:3\sin(-4x-π)-5
|
domain of 9g(x)=x-sqrt(2x-3)
|
domain\:9g(x)=x-\sqrt{2x-3}
|
domain of f(x)=(sqrt(x-4))^2+3
|
domain\:f(x)=(\sqrt{x-4})^{2}+3
|
domain of 2+sqrt(x-3)
|
domain\:2+\sqrt{x-3}
|
domain of f(x)=x-6sqrt(x)+1
|
domain\:f(x)=x-6\sqrt{x}+1
|
domain of f(x)=(sqrt(4-x))/x
|
domain\:f(x)=\frac{\sqrt{4-x}}{x}
|
domain of (x+2)/(x-1)+sqrt(x+2)
|
domain\:\frac{x+2}{x-1}+\sqrt{x+2}
|
domain of f(x)=-3+6/x
|
domain\:f(x)=-3+\frac{6}{x}
|
domain of f(x)=(x^2+2x)/(x-7)
|
domain\:f(x)=\frac{x^{2}+2x}{x-7}
|
inverse of f(x)=3xsqrt(x)
|
inverse\:f(x)=3x\sqrt{x}
|
domain of (x^2+3x)/(4x^3-11x^2-3x)
|
domain\:\frac{x^{2}+3x}{4x^{3}-11x^{2}-3x}
|
domain of f(x)=xsqrt(ln(x))
|
domain\:f(x)=x\sqrt{\ln(x)}
|
domain of f(x)=3x^2-x
|
domain\:f(x)=3x^{2}-x
|
domain of 1/(x^2+x-6)
|
domain\:\frac{1}{x^{2}+x-6}
|
domain of 1/(3x^2+11x-20)
|
domain\:\frac{1}{3x^{2}+11x-20}
|
domain of f(x)=(x^2)/(x^2+x+1)
|
domain\:f(x)=\frac{x^{2}}{x^{2}+x+1}
|
domain of f(x)=(x^2+9x+18)/(2x^2-18)
|
domain\:f(x)=\frac{x^{2}+9x+18}{2x^{2}-18}
|
domain of f(x)=ln(9t^2-64)
|
domain\:f(x)=\ln(9t^{2}-64)
|
domain of f(x)=sqrt((-18x-21)/(5x+6))
|
domain\:f(x)=\sqrt{\frac{-18x-21}{5x+6}}
|
domain of f(x)=sqrt(60x+4500)
|
domain\:f(x)=\sqrt{60x+4500}
|
range of f(x)=x-5
|
range\:f(x)=x-5
|
domain of sqrt(2-x)-log_{5}(12-x^2)
|
domain\:\sqrt{2-x}-\log_{5}(12-x^{2})
|
domain of (3x+1)/x
|
domain\:\frac{3x+1}{x}
|