domain of f(x)=-16/15 x+8/15
|
domain\:f(x)=-\frac{16}{15}x+\frac{8}{15}
|
domain of y=-2sqrt(x-7)+1
|
domain\:y=-2\sqrt{x-7}+1
|
domain of f(x)=(x+7)/(x^2+3x-4)
|
domain\:f(x)=\frac{x+7}{x^{2}+3x-4}
|
domain of \sqrt[4]{13-4x}
|
domain\:\sqrt[4]{13-4x}
|
domain of f(x)=\sqrt[3]{(y/(y-3))}
|
domain\:f(x)=\sqrt[3]{(\frac{y}{y-3})}
|
domain of f(x)=sqrt(2+|x|)
|
domain\:f(x)=\sqrt{2+\left|x\right|}
|
domain of 4x^3+7x^2-10x-8
|
domain\:4x^{3}+7x^{2}-10x-8
|
domain of y=0.5(x^2-10x-5)
|
domain\:y=0.5(x^{2}-10x-5)
|
domain of (x-2)/(x^2+4x+4)
|
domain\:\frac{x-2}{x^{2}+4x+4}
|
domain of (x^2-13x+36)/(x^2+25)
|
domain\:\frac{x^{2}-13x+36}{x^{2}+25}
|
domain of f(x)=(x^2-36)/(x^2-25)
|
domain\:f(x)=\frac{x^{2}-36}{x^{2}-25}
|
domain of ((6+x)(3+x))/(-3-4x)
|
domain\:\frac{(6+x)(3+x)}{-3-4x}
|
domain of-3.3
|
domain\:-3.3
|
domain of f(x)= 6/(25-x^2)
|
domain\:f(x)=\frac{6}{25-x^{2}}
|
domain of 6x^2-15x
|
domain\:6x^{2}-15x
|
domain of f(x)=4x^2-8x-3
|
domain\:f(x)=4x^{2}-8x-3
|
domain of f(x)=4x^2-8x+3
|
domain\:f(x)=4x^{2}-8x+3
|
domain of f(x)=xsqrt(x^2+1)
|
domain\:f(x)=x\sqrt{x^{2}+1}
|
domain of 1+(sin(x)-pi/2)
|
domain\:1+(\sin(x)-\frac{π}{2})
|
slope of y=-3x+7
|
slope\:y=-3x+7
|
domain of (ln(x+5)+2)/3
|
domain\:\frac{\ln(x+5)+2}{3}
|
domain of f(x)=200-x
|
domain\:f(x)=200-x
|
domain of f(x)=-2x(x-3)(x-6)
|
domain\:f(x)=-2x(x-3)(x-6)
|
domain of y=ln(x^2-x-12)
|
domain\:y=\ln(x^{2}-x-12)
|
domain of-2.2
|
domain\:-2.2
|
domain of f(x)=(-6)/(2x+1)
|
domain\:f(x)=\frac{-6}{2x+1}
|
domain of f(x)=2x^3-x^2+3
|
domain\:f(x)=2x^{3}-x^{2}+3
|
domain of f(x)=(sqrt(x^2-8))/(x^2+3x+2)
|
domain\:f(x)=\frac{\sqrt{x^{2}-8}}{x^{2}+3x+2}
|
domain of f(x)=((x+8))/(x^2-16x+64)
|
domain\:f(x)=\frac{(x+8)}{x^{2}-16x+64}
|
perpendicular y=-x/2+6
|
perpendicular\:y=-\frac{x}{2}+6
|
domain of f(x)=(2x-1)/(sqrt(3x+5))
|
domain\:f(x)=\frac{2x-1}{\sqrt{3x+5}}
|
domain of f(x)=(6x+7)/(7x-2)
|
domain\:f(x)=\frac{6x+7}{7x-2}
|
domain of f(x)= 1/(sqrt((x)ln(x^2-1)))
|
domain\:f(x)=\frac{1}{\sqrt{(x)\ln(x^{2}-1)}}
|
domain of g(x)=(2(-2)+1)/(-2+4)
|
domain\:g(x)=\frac{2(-2)+1}{-2+4}
|
domain of 8x+7
|
domain\:8x+7
|
domain of 8x-1
|
domain\:8x-1
|
domain of 8x-3
|
domain\:8x-3
|
domain of x/(x^6-7x^3-8)
|
domain\:\frac{x}{x^{6}-7x^{3}-8}
|
domain of y=log_{10}(5-4x)
|
domain\:y=\log_{10}(5-4x)
|
domain of 1/(x^{-24)+1}
|
domain\:\frac{1}{x^{-24}+1}
|
midpoint (0,-2)(4,2)
|
midpoint\:(0,-2)(4,2)
|
domain of 3^{x+1}-2
|
domain\:3^{x+1}-2
|
domain of 3^{x+1}-4
|
domain\:3^{x+1}-4
|
domain of f(x)=log_{10}(x-x^2)
|
domain\:f(x)=\log_{10}(x-x^{2})
|
domain of f(x)= 1/(-8+x^3)
|
domain\:f(x)=\frac{1}{-8+x^{3}}
|
domain of y>sqrt((x+3))
|
domain\:y>\sqrt{(x+3)}
|
domain of f(x)=(x+1)/(x^2+5x-14)
|
domain\:f(x)=\frac{x+1}{x^{2}+5x-14}
|
domain of f(x)=(x-6)/(x+6)
|
domain\:f(x)=\frac{x-6}{x+6}
|
domain of y=(x-4)^2+2
|
domain\:y=(x-4)^{2}+2
|
domain of f(x)=-2+sin(x)
|
domain\:f(x)=-2+\sin(x)
|
inflection points of f(x)=4x^3-48x-9
|
inflection\:points\:f(x)=4x^{3}-48x-9
|
domain of g(x)=log_{3}(x+3)
|
domain\:g(x)=\log_{3}(x+3)
|
domain of f(x)=(sqrt(2x-6))/(x-6)
|
domain\:f(x)=\frac{\sqrt{2x-6}}{x-6}
|
domain of f(x)=sqrt((x^2-16)/(x^2-25))
|
domain\:f(x)=\sqrt{\frac{x^{2}-16}{x^{2}-25}}
|
domain of f(x)=e^{(-x)}+1
|
domain\:f(x)=e^{(-x)}+1
|
domain of f(x)=\sqrt[3]{x-2}-2
|
domain\:f(x)=\sqrt[3]{x-2}-2
|
domain of f(x)=(4x)/5+2
|
domain\:f(x)=\frac{4x}{5}+2
|
domain of f(x)=x^2+5x-6
|
domain\:f(x)=x^{2}+5x-6
|
domain of (sqrt(36-x^2))/(sqrt(x+2))
|
domain\:\frac{\sqrt{36-x^{2}}}{\sqrt{x+2}}
|
domain of x-10
|
domain\:x-10
|
domain of x-16
|
domain\:x-16
|
asymptotes of f(x)=7(2)^x
|
asymptotes\:f(x)=7(2)^{x}
|
domain of f(x)=sqrt((x+3)(x^2+1))
|
domain\:f(x)=\sqrt{(x+3)(x^{2}+1)}
|
domain of f(x)=-(1/3)^{-x+2}+2
|
domain\:f(x)=-(\frac{1}{3})^{-x+2}+2
|
domain of f(x)=ln(x-3)+2
|
domain\:f(x)=\ln(x-3)+2
|
domain of (x+1)/(x^2+4)
|
domain\:\frac{x+1}{x^{2}+4}
|
domain of y=3+x
|
domain\:y=3+x
|
domain of f(x)=(sqrt(x))/(x-18)
|
domain\:f(x)=\frac{\sqrt{x}}{x-18}
|
domain of f(x)=log_{10}((3x)/(x+5))
|
domain\:f(x)=\log_{10}(\frac{3x}{x+5})
|
domain of log_{2}(2x+4)
|
domain\:\log_{2}(2x+4)
|
domain of y= 2/(x-2)
|
domain\:y=\frac{2}{x-2}
|
inverse of 2sqrt(5)
|
inverse\:2\sqrt{5}
|
slope intercept of 10-4x= 1/3 y
|
slope\:intercept\:10-4x=\frac{1}{3}y
|
domain of y=3-x
|
domain\:y=3-x
|
domain of (5x-5)/((2x+6)(5x-3)x)
|
domain\:\frac{5x-5}{(2x+6)(5x-3)x}
|
domain of sqrt(x+1)-2
|
domain\:\sqrt{x+1}-2
|
domain of sqrt(x+1)+2
|
domain\:\sqrt{x+1}+2
|
domain of-(x+1)(x-2)
|
domain\:-(x+1)(x-2)
|
domain of f(x)=(1/x)/(1+1/x)
|
domain\:f(x)=\frac{\frac{1}{x}}{1+\frac{1}{x}}
|
domain of f(x)=(x-10)/(x^2-16)
|
domain\:f(x)=\frac{x-10}{x^{2}-16}
|
domain of 8x-1704
|
domain\:8x-1704
|
domain of-5.5
|
domain\:-5.5
|
domain of f(x)=7x^2+8x-15
|
domain\:f(x)=7x^{2}+8x-15
|
midpoint (-5,5),(-2,10)
|
midpoint\:(-5,5),(-2,10)
|
domain of 3xe^{1/x}
|
domain\:3xe^{\frac{1}{x}}
|
domain of f(x)=y=(x+2)/(sqrt(x))
|
domain\:f(x)=y=\frac{x+2}{\sqrt{x}}
|
domain of f(x)=6x-2y=9
|
domain\:f(x)=6x-2y=9
|
domain of f(x)=(2x)
|
domain\:f(x)=(2x)
|
domain of f(x)=sqrt(1-2\sqrt{3-2x-x^2)}
|
domain\:f(x)=\sqrt{1-2\sqrt{3-2x-x^{2}}}
|
domain of \sqrt[4]{x+9}
|
domain\:\sqrt[4]{x+9}
|
domain of-sqrt(36-(1.2x+5)^2)+3
|
domain\:-\sqrt{36-(1.2x+5)^{2}}+3
|
domain of f(x)=(9+x)/(1-9x)
|
domain\:f(x)=\frac{9+x}{1-9x}
|
domain of f(x)= x/(e^{x^2*5x+6)}+ln(x-1)
|
domain\:f(x)=\frac{x}{e^{x^{2}\cdot\:5x+6}}+\ln(x-1)
|
domain of f(x)=(1/(sqrt(x)))^2-9
|
domain\:f(x)=(\frac{1}{\sqrt{x}})^{2}-9
|
domain of ((x+2)(x-3))/(x^2-4)
|
domain\:\frac{(x+2)(x-3)}{x^{2}-4}
|
domain of (x-6)/(x^2+12x+36)
|
domain\:\frac{x-6}{x^{2}+12x+36}
|
domain of (x+3)-2
|
domain\:(x+3)-2
|
domain of f(x)=arcsin((2x+1)/x-1)
|
domain\:f(x)=\arcsin(\frac{2x+1}{x}-1)
|
domain of f(x)=(x-6)/(x-5)
|
domain\:f(x)=\frac{x-6}{x-5}
|
domain of f(x)=-sqrt(1-ln(x))
|
domain\:f(x)=-\sqrt{1-\ln(x)}
|