domain of 2sqrt(x+3)+5
|
domain\:2\sqrt{x+3}+5
|
domain of (x^2-3)/2
|
domain\:\frac{x^{2}-3}{2}
|
domain of log_{10}(4)(5x-9)
|
domain\:\log_{10}(4)(5x-9)
|
parity f(x)=sin(2x)
|
parity\:f(x)=\sin(2x)
|
domain of 1/(sqrt(4-x))
|
domain\:\frac{1}{\sqrt{4-x}}
|
domain of g(t)=sqrt(6^t-36)
|
domain\:g(t)=\sqrt{6^{t}-36}
|
domain of f(x)=3-sqrt(x)
|
domain\:f(x)=3-\sqrt{x}
|
domain of f(x)= x/((1+x)^2)
|
domain\:f(x)=\frac{x}{(1+x)^{2}}
|
domain of f(x)=12-x-9/x ,x>0
|
domain\:f(x)=12-x-\frac{9}{x},x>0
|
domain of (x-1)^2+5
|
domain\:(x-1)^{2}+5
|
domain of (x-1)^2+3
|
domain\:(x-1)^{2}+3
|
domain of f(x)=log_{3}(8-2x)+1
|
domain\:f(x)=\log_{3}(8-2x)+1
|
domain of (1/2)^{x-2}-2
|
domain\:(\frac{1}{2})^{x-2}-2
|
domain of f(x)=((x+3))/4
|
domain\:f(x)=\frac{(x+3)}{4}
|
midpoint (-8,-3)(10,9)
|
midpoint\:(-8,-3)(10,9)
|
domain of f(x)=y=sqrt(4-x^2)
|
domain\:f(x)=y=\sqrt{4-x^{2}}
|
domain of f(x)=1^x
|
domain\:f(x)=1^{x}
|
domain of f(x)=(x^3+4)/(x^2-25)
|
domain\:f(x)=\frac{x^{3}+4}{x^{2}-25}
|
domain of ((x^3-x^2-13x-3))/((x+3))
|
domain\:\frac{(x^{3}-x^{2}-13x-3)}{(x+3)}
|
domain of f(x)=(-3x^2)/(8-x^3)
|
domain\:f(x)=\frac{-3x^{2}}{8-x^{3}}
|
domain of f(x)=-x(x-2)^4(x+3)
|
domain\:f(x)=-x(x-2)^{4}(x+3)
|
domain of 2yx-3y=5
|
domain\:2yx-3y=5
|
domain of f(x)=-x^2+6x-9
|
domain\:f(x)=-x^{2}+6x-9
|
domain of 1+sqrt(|x-1|-1)
|
domain\:1+\sqrt{\left|x-1\right|-1}
|
extreme points of f(x)=x^2-12x+1
|
extreme\:points\:f(x)=x^{2}-12x+1
|
domain of f(x)=((1-x))/x
|
domain\:f(x)=\frac{(1-x)}{x}
|
domain of f(x)=6-x^2
|
domain\:f(x)=6-x^{2}
|
domain of (x^3)/(x-4)
|
domain\:\frac{x^{3}}{x-4}
|
domain of 3x^2+x-2
|
domain\:3x^{2}+x-2
|
domain of f(x)=log_{3}(x^2-3x-18)
|
domain\:f(x)=\log_{3}(x^{2}-3x-18)
|
domain of g(x)=4x-9
|
domain\:g(x)=4x-9
|
domain of f(x)=1+3x
|
domain\:f(x)=1+3x
|
domain of f(x)=(x-2)2
|
domain\:f(x)=(x-2)2
|
domain of h(x)=(x-6)/(x-5)
|
domain\:h(x)=\frac{x-6}{x-5}
|
parity sqrt(1+x^2sin^2(x)+x^2cos^2(x))
|
parity\:\sqrt{1+x^{2}\sin^{2}(x)+x^{2}\cos^{2}(x)}
|
domain of (-5)/(x-3)
|
domain\:\frac{-5}{x-3}
|
domain of y=(sqrt(x-4))/2
|
domain\:y=\frac{\sqrt{x-4}}{2}
|
domain of f(x)=1x^2-2x-8
|
domain\:f(x)=1x^{2}-2x-8
|
domain of f(x)=((3x))/(x-7)
|
domain\:f(x)=\frac{(3x)}{x-7}
|
domain of f(x)=x^4+x^2-1
|
domain\:f(x)=x^{4}+x^{2}-1
|
domain of f(x)=y=(2+x)/(x^2)
|
domain\:f(x)=y=\frac{2+x}{x^{2}}
|
domain of f(x)=sqrt(x+6-7)
|
domain\:f(x)=\sqrt{x+6-7}
|
domain of |x|+|x+1|+|3-x|
|
domain\:\left|x\right|+\left|x+1\right|+\left|3-x\right|
|
domain of f(x)=9995*0.82^0
|
domain\:f(x)=9995\cdot\:0.82^{0}
|
domain of f(x)=5*x^2+81
|
domain\:f(x)=5\cdot\:x^{2}+81
|
critical points of f(x)=-x^2+2x-5
|
critical\:points\:f(x)=-x^{2}+2x-5
|
domain of ln(-2-y^2)
|
domain\:\ln(-2-y^{2})
|
domain of x^3+x
|
domain\:x^{3}+x
|
domain of x/(sqrt(x-1)-3)
|
domain\:\frac{x}{\sqrt{x-1}-3}
|
domain of g(x)=x^3
|
domain\:g(x)=x^{3}
|
domain of f(x)=sqrt((x-3)/2)
|
domain\:f(x)=\sqrt{\frac{x-3}{2}}
|
domain of f(x)=3sqrt(x)+1
|
domain\:f(x)=3\sqrt{x}+1
|
domain of f(x)=(-x+3)/(-9)
|
domain\:f(x)=\frac{-x+3}{-9}
|
domain of f(x)=(sqrt(2x+60))/(ln(5x-20))
|
domain\:f(x)=\frac{\sqrt{2x+60}}{\ln(5x-20)}
|
domain of sqrt(2x)-1
|
domain\:\sqrt{2x}-1
|
domain of f(x)=x^2-100
|
domain\:f(x)=x^{2}-100
|
domain of f(x)=(x+1)/(sqrt(5x^2-16))
|
domain\:f(x)=\frac{x+1}{\sqrt{5x^{2}-16}}
|
domain of f(x)= 1/(sqrt(x))+7
|
domain\:f(x)=\frac{1}{\sqrt{x}}+7
|
domain of f(x)=log_{1/2}(x^2-2x-15)+7
|
domain\:f(x)=\log_{\frac{1}{2}}(x^{2}-2x-15)+7
|
domain of f(x)=ln(x^2-81)
|
domain\:f(x)=\ln(x^{2}-81)
|
domain of (x^2+x-30)/(x^2-4x-5)
|
domain\:\frac{x^{2}+x-30}{x^{2}-4x-5}
|
domain of f(x)=x^2-12x
|
domain\:f(x)=x^{2}-12x
|
domain of f(x)=(x+7)/(x^2+14x+49)
|
domain\:f(x)=\frac{x+7}{x^{2}+14x+49}
|
domain of f(x)=(ln(x))^{ln(x)}
|
domain\:f(x)=(\ln(x))^{\ln(x)}
|
domain of (x^3)/((4-x)^2)
|
domain\:\frac{x^{3}}{(4-x)^{2}}
|
domain of sqrt(4x^2-9)
|
domain\:\sqrt{4x^{2}-9}
|
domain of f(x)=sqrt(x^2-6x+9)
|
domain\:f(x)=\sqrt{x^{2}-6x+9}
|
line (2,0)(3,1)
|
line\:(2,0)(3,1)
|
domain of f(x)=arccos(sqrt(x^2-3))
|
domain\:f(x)=\arccos(\sqrt{x^{2}-3})
|
domain of y=(5x)/(2x-7)
|
domain\:y=\frac{5x}{2x-7}
|
domain of (x^2-3)/(x^3-2x^2-x+2)
|
domain\:\frac{x^{2}-3}{x^{3}-2x^{2}-x+2}
|
domain of f(x)=sqrt((x(x-5)))
|
domain\:f(x)=\sqrt{(x(x-5))}
|
domain of 22x-1694
|
domain\:22x-1694
|
domain of y=(x^2-4)/(4x^2-8x)
|
domain\:y=\frac{x^{2}-4}{4x^{2}-8x}
|
domain of 3,x>-5
|
domain\:3,x>-5
|
domain of (2x+3)/(x-5)
|
domain\:\frac{2x+3}{x-5}
|
domain of f(x,y)=e^{-x}
|
domain\:f(x,y)=e^{-x}
|
domain of f(x)=5x-6
|
domain\:f(x)=5x-6
|
domain of sqrt((t+5)(t-5))
|
domain\:\sqrt{(t+5)(t-5)}
|
domain of f(x)=-sqrt(25-(x+2)^2)
|
domain\:f(x)=-\sqrt{25-(x+2)^{2}}
|
domain of f(x)=\sqrt[5]{2x-1}
|
domain\:f(x)=\sqrt[5]{2x-1}
|
domain of f(x)=130x^2-4x^3
|
domain\:f(x)=130x^{2}-4x^{3}
|
domain of sin(x^3)
|
domain\:\sin(x^{3})
|
domain of f(x)=(x^2+4)/(x^2-2x-8)
|
domain\:f(x)=\frac{x^{2}+4}{x^{2}-2x-8}
|
domain of f(x)=-0.5sec(pi/2 x+pi/3)
|
domain\:f(x)=-0.5\sec(\frac{π}{2}x+\frac{π}{3})
|
domain of f(x)=(x^2-1)/(x^2-x)
|
domain\:f(x)=\frac{x^{2}-1}{x^{2}-x}
|
domain of sqrt(x+5)+2
|
domain\:\sqrt{x+5}+2
|
domain of sqrt(x+5)+4
|
domain\:\sqrt{x+5}+4
|
range of-2/(x+1)+2
|
range\:-\frac{2}{x+1}+2
|
domain of ((7x+18))/(x^2-x-4)
|
domain\:\frac{(7x+18)}{x^{2}-x-4}
|
domain of 2tan(x)
|
domain\:2\tan(x)
|
domain of f(x)=((x-7))/((x+22))
|
domain\:f(x)=\frac{(x-7)}{(x+22)}
|
domain of f(x)=ln(2t-3)
|
domain\:f(x)=\ln(2t-3)
|
domain of f(x)=(2x+7)/(4x^2-6)
|
domain\:f(x)=\frac{2x+7}{4x^{2}-6}
|
domain of f(x)=(-3x)/(sqrt(x^2-9x))
|
domain\:f(x)=\frac{-3x}{\sqrt{x^{2}-9x}}
|
domain of f(x)= 1/9
|
domain\:f(x)=\frac{1}{9}
|
domain of f(x)=sqrt(8x+16)
|
domain\:f(x)=\sqrt{8x+16}
|
domain of f(x)=(sqrt(5-x))
|
domain\:f(x)=(\sqrt{5-x})
|
domain of 2sqrt(y)+3
|
domain\:2\sqrt{y}+3
|
domain of (2x^3)/(x^2-4)
|
domain\:\frac{2x^{3}}{x^{2}-4}
|