Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of f(x)= x/(2x-3)
inverse\:f(x)=\frac{x}{2x-3}
intercepts of f(x)=4(x-2)-1
intercepts\:f(x)=4(x-2)-1
inverse of f(x)=2(1/4)^x
inverse\:f(x)=2(\frac{1}{4})^{x}
inverse of f(x)=x^2-6x+5,x<= 3
inverse\:f(x)=x^{2}-6x+5,x\le\:3
domain of 3x+7
domain\:3x+7
domain of f(x)=sqrt((25-x^2)/(x+1))
domain\:f(x)=\sqrt{\frac{25-x^{2}}{x+1}}
domain of (7x+1)/(1+x)
domain\:\frac{7x+1}{1+x}
domain of f(x)= 1/(x^2-5x-6)
domain\:f(x)=\frac{1}{x^{2}-5x-6}
inverse of log_{10}(x+4)
inverse\:\log_{10}(x+4)
extreme f(x)=3x^5-20x^3
extreme\:f(x)=3x^{5}-20x^{3}
amplitude of 1/3 cos(x)
amplitude\:\frac{1}{3}\cos(x)
range of f(x)=(8x-3)/4
range\:f(x)=\frac{8x-3}{4}
monotone f(x)=2x^3-24x
monotone\:f(x)=2x^{3}-24x
parity (tan(x))/(x^2)
parity\:\frac{\tan(x)}{x^{2}}
intercepts of f(x)=x^2-4x-2
intercepts\:f(x)=x^{2}-4x-2
f(θ)=sin^2(θ)
f(θ)=\sin^{2}(θ)
domain of f(x)=x^2+6x+11
domain\:f(x)=x^{2}+6x+11
critical f(x)=4(x-5)^{2/3}
critical\:f(x)=4(x-5)^{\frac{2}{3}}
domain of 1+8x-2x^3
domain\:1+8x-2x^{3}
amplitude of y=6sin(x)
amplitude\:y=6\sin(x)
amplitude of-5sin(2x+pi/2)
amplitude\:-5\sin(2x+\frac{π}{2})
domain of f(x)=sqrt((x-3)/(x-5))
domain\:f(x)=\sqrt{\frac{x-3}{x-5}}
critical f(x)= x/((x^2+1)^2)
critical\:f(x)=\frac{x}{(x^{2}+1)^{2}}
domain of f(x)=x^2-2x^3
domain\:f(x)=x^{2}-2x^{3}
intercepts of f(x)=-x^2+10x-21
intercepts\:f(x)=-x^{2}+10x-21
inverse of f(x)=(3-3x)/(6x-1)
inverse\:f(x)=\frac{3-3x}{6x-1}
midpoint (1/3 ,-5/4),(3/4 ,-4)
midpoint\:(\frac{1}{3},-\frac{5}{4}),(\frac{3}{4},-4)
domain of f(x)= 4/(sqrt(1-3x))
domain\:f(x)=\frac{4}{\sqrt{1-3x}}
extreme f(x)=6(x-e^x)
extreme\:f(x)=6(x-e^{x})
inverse of f(x)=2x+8
inverse\:f(x)=2x+8
extreme f(x)=-x+ln(x)
extreme\:f(x)=-x+\ln(x)
domain of f(x)=-(2x)/((x+1)^2(x-1)^2)
domain\:f(x)=-\frac{2x}{(x+1)^{2}(x-1)^{2}}
slope of 3x+2
slope\:3x+2
domain of f(x)=sqrt(7-x)
domain\:f(x)=\sqrt{7-x}
domain of-x^2+4
domain\:-x^{2}+4
range of-x-5
range\:-x-5
domain of x^2+1/x
domain\:x^{2}+\frac{1}{x}
inverse of f(x)=(8t)/3+8
inverse\:f(x)=\frac{8t}{3}+8
monotone (4x-12)/((x-2)^2)
monotone\:\frac{4x-12}{(x-2)^{2}}
range of f(x)=x^2-49
range\:f(x)=x^{2}-49
inflection (0.2)^{2/3}(1.2)
inflection\:(0.2)^{\frac{2}{3}}(1.2)
extreme (x^2-4x)/(x^2-4x-12)
extreme\:\frac{x^{2}-4x}{x^{2}-4x-12}
inflection f(x)= x/(x+8)
inflection\:f(x)=\frac{x}{x+8}
asymptotes of f(x)=(2x-1)/(3x^2)
asymptotes\:f(x)=\frac{2x-1}{3x^{2}}
line (3,-3),(-3,5)
line\:(3,-3),(-3,5)
intercepts of f(x)=2x+y=7
intercepts\:f(x)=2x+y=7
inverse of g(x)=(e^x)/(1+2e^x)
inverse\:g(x)=\frac{e^{x}}{1+2e^{x}}
distance (5,9),(-7,-7)
distance\:(5,9),(-7,-7)
domain of x^2+4x+6
domain\:x^{2}+4x+6
inverse of (4x)/(x+7)
inverse\:\frac{4x}{x+7}
symmetry y^2=-11x
symmetry\:y^{2}=-11x
f(x)=tan(2x)
f(x)=\tan(2x)
inverse of f(x)=22.0264997
inverse\:f(x)=22.0264997
range of 2t
range\:2t
extreme f(x)=2x^3+3x^2-72x
extreme\:f(x)=2x^{3}+3x^{2}-72x
inverse of f(x)=(16)/x
inverse\:f(x)=\frac{16}{x}
range of sqrt(x)-3
range\:\sqrt{x}-3
line (3,5),(5,10)
line\:(3,5),(5,10)
extreme (x^2+9)^3
extreme\:(x^{2}+9)^{3}
domain of f(x)= 1/(sqrt(x+4))
domain\:f(x)=\frac{1}{\sqrt{x+4}}
distance (5,-7),(0,3)
distance\:(5,-7),(0,3)
intercepts of (-x^2+8)/(2x^2-3)
intercepts\:\frac{-x^{2}+8}{2x^{2}-3}
perpendicular y= 5/3 x+5
perpendicular\:y=\frac{5}{3}x+5
domain of (9x^2-1)/(9x^3+6x^2+x)
domain\:\frac{9x^{2}-1}{9x^{3}+6x^{2}+x}
inverse of y= pi/4+sin(x)
inverse\:y=\frac{π}{4}+\sin(x)
domain of sqrt(5x+20)
domain\:\sqrt{5x+20}
inverse of f(x)=22x
inverse\:f(x)=22x
extreme f(x)= x/(x+2)
extreme\:f(x)=\frac{x}{x+2}
extreme f(x)=x^8e^x-6
extreme\:f(x)=x^{8}e^{x}-6
inverse of f(x)=(-12-2n)/3
inverse\:f(x)=\frac{-12-2n}{3}
range of f(x)=e^{x+1}
range\:f(x)=e^{x+1}
parity sin(tan(x))
parity\:\sin(\tan(x))
inverse of f(x)= 5/(x+8)
inverse\:f(x)=\frac{5}{x+8}
asymptotes of (4+x^4)/(x^2-x^4)
asymptotes\:\frac{4+x^{4}}{x^{2}-x^{4}}
inverse of f(x)=2^{-x}
inverse\:f(x)=2^{-x}
inverse of f(x)=10x-2
inverse\:f(x)=10x-2
parity f(x)=-x^4+x^2+1
parity\:f(x)=-x^{4}+x^{2}+1
periodicity of f(x)=5sin(1/4 x)
periodicity\:f(x)=5\sin(\frac{1}{4}x)
extreme f(x)=-x^2+4x+2
extreme\:f(x)=-x^{2}+4x+2
inverse of f(x)=2e^{x+1}-4
inverse\:f(x)=2e^{x+1}-4
domain of f(x)=-(x+1)^2+4
domain\:f(x)=-(x+1)^{2}+4
asymptotes of f(x)= 5/(-3x+3)
asymptotes\:f(x)=\frac{5}{-3x+3}
range of f(x)= 2/(x-2)
range\:f(x)=\frac{2}{x-2}
asymptotes of f(x)=((2x^3+2x))/(x^2-1)
asymptotes\:f(x)=\frac{(2x^{3}+2x)}{x^{2}-1}
range of 3x+4
range\:3x+4
periodicity of f(x)=cos(1/3 x)
periodicity\:f(x)=\cos(\frac{1}{3}x)
critical f(x)=32x-2x^2
critical\:f(x)=32x-2x^{2}
asymptotes of log_{2}(x)
asymptotes\:\log_{2}(x)
asymptotes of f(x)=(-2x+8)/(x+2)
asymptotes\:f(x)=\frac{-2x+8}{x+2}
inverse of f(x)=(x-3)^2+1/2
inverse\:f(x)=(x-3)^{2}+\frac{1}{2}
domain of 9/(sqrt(t))
domain\:\frac{9}{\sqrt{t}}
domain of f(x)= 1/(x^2-7x-8)
domain\:f(x)=\frac{1}{x^{2}-7x-8}
domain of f(x)=((2x-6))/((x^{(2))+4x-5)}
domain\:f(x)=\frac{(2x-6)}{(x^{(2)}+4x-5)}
perpendicular y=-2x-3
perpendicular\:y=-2x-3
asymptotes of f(x)=(3x^2-108)/(x^2-6x)
asymptotes\:f(x)=\frac{3x^{2}-108}{x^{2}-6x}
domain of f(x)= 7/(sqrt(x))
domain\:f(x)=\frac{7}{\sqrt{x}}
asymptotes of f(x)=(x^2+2x)/(x^3-49x)
asymptotes\:f(x)=\frac{x^{2}+2x}{x^{3}-49x}
inverse of f(x)=13x+9
inverse\:f(x)=13x+9
extreme f(x)= 1/4 (3x-2),x<= 3
extreme\:f(x)=\frac{1}{4}(3x-2),x\le\:3
inverse of f(x)=x+1/x
inverse\:f(x)=x+\frac{1}{x}
1
..
250
251
252
253
254
..
1324