Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
critical sec^2(x)
critical\:\sec^{2}(x)
extreme f(x)=(x^3)/3-x^2-8x
extreme\:f(x)=\frac{x^{3}}{3}-x^{2}-8x
perpendicular 4x+5y=8,(4,-2)
perpendicular\:4x+5y=8,(4,-2)
domain of 1/(sqrt(x^2-7x))
domain\:\frac{1}{\sqrt{x^{2}-7x}}
extreme f(x)=x^2e^{-x^2}
extreme\:f(x)=x^{2}e^{-x^{2}}
extreme f(x)=-6x^3+9x^2+36x
extreme\:f(x)=-6x^{3}+9x^{2}+36x
distance (-2,-6),(-5,0)
distance\:(-2,-6),(-5,0)
critical f(x)=3x^4+12x
critical\:f(x)=3x^{4}+12x
intercepts of f(x)=-3(4-x)(4x+3)
intercepts\:f(x)=-3(4-x)(4x+3)
slope ofintercept y+4=3(x+1)
slopeintercept\:y+4=3(x+1)
intercepts of 12sqrt(p)
intercepts\:12\sqrt{p}
inverse of f(x)=sqrt(x+1)+2
inverse\:f(x)=\sqrt{x+1}+2
inverse of f(x)=(x-7)/3
inverse\:f(x)=\frac{x-7}{3}
inverse of f(r)=(-3-4r)/(2+3r)
inverse\:f(r)=\frac{-3-4r}{2+3r}
critical f(x)=4x^3-18x^2+24x
critical\:f(x)=4x^{3}-18x^{2}+24x
domain of f(x)=sqrt(15-x)
domain\:f(x)=\sqrt{15-x}
midpoint (5,2),(-4,-3)
midpoint\:(5,2),(-4,-3)
asymptotes of f(x)=(4x^2+2)/(4x+4)
asymptotes\:f(x)=\frac{4x^{2}+2}{4x+4}
inflection f(x)= 3/(x+2)
inflection\:f(x)=\frac{3}{x+2}
domain of ln(sqrt(x^2-5x+6))
domain\:\ln(\sqrt{x^{2}-5x+6})
simplify (8.5)(11)
simplify\:(8.5)(11)
domain of f(x)=2-18t
domain\:f(x)=2-18t
inverse of 1/2 log_{10}(2x)
inverse\:\frac{1}{2}\log_{10}(2x)
symmetry (x+2)^2-1
symmetry\:(x+2)^{2}-1
critical f(x)=ln(x^2-1)
critical\:f(x)=\ln(x^{2}-1)
domain of 1/(-10(\frac{1){-5x-6})+3}
domain\:\frac{1}{-10(\frac{1}{-5x-6})+3}
parity (x+1)/(x^2-1)
parity\:\frac{x+1}{x^{2}-1}
inverse of f(x)=sqrt(x+2)
inverse\:f(x)=\sqrt{x+2}
range of f(x)= 1/x-4
range\:f(x)=\frac{1}{x}-4
inverse of f(x)=6+1/(7x)
inverse\:f(x)=6+\frac{1}{7x}
simplify (5)(3.4)
simplify\:(5)(3.4)
extreme f(x)=(3x-1)(x+3)(x-2)
extreme\:f(x)=(3x-1)(x+3)(x-2)
perpendicular x-2y=6
perpendicular\:x-2y=6
inverse of f(x)=(x-3)/(x+9)
inverse\:f(x)=\frac{x-3}{x+9}
parity f(x)= 1/(x^2-5x+6)
parity\:f(x)=\frac{1}{x^{2}-5x+6}
domain of f(x)=-3x-2
domain\:f(x)=-3x-2
inverse of f(x)=11^x
inverse\:f(x)=11^{x}
asymptotes of f(x)= 1/(-x+4)
asymptotes\:f(x)=\frac{1}{-x+4}
inverse of x+3
inverse\:x+3
line-3x+y=-1
line\:-3x+y=-1
line x=3
line\:x=3
inflection (98)/(x^3)
inflection\:\frac{98}{x^{3}}
range of-3x+1
range\:-3x+1
inverse of f(x)=3-6x
inverse\:f(x)=3-6x
line m=4,(2,7)
line\:m=4,(2,7)
domain of 1/(sqrt(1+2x))
domain\:\frac{1}{\sqrt{1+2x}}
range of log_{0.5}(x)
range\:\log_{0.5}(x)
extreme f(x)=(x+4)^{6/7}
extreme\:f(x)=(x+4)^{\frac{6}{7}}
extreme 3x^4+4x^3
extreme\:3x^{4}+4x^{3}
domain of f(x)=49x-16
domain\:f(x)=49x-16
inverse of f(x)=((1+x))/x
inverse\:f(x)=\frac{(1+x)}{x}
line (2,5),(3,8)
line\:(2,5),(3,8)
extreme x^6(x-1)^5
extreme\:x^{6}(x-1)^{5}
asymptotes of f(x)=((5+x^4))/(x^2-x^4)
asymptotes\:f(x)=\frac{(5+x^{4})}{x^{2}-x^{4}}
range of f(x)=-sin(x-pi/3)
range\:f(x)=-\sin(x-\frac{π}{3})
domain of f(x)= 5/(3x-9)
domain\:f(x)=\frac{5}{3x-9}
inverse of f(x)=17
inverse\:f(x)=17
parallel 2x-y=6,(-7,-8)
parallel\:2x-y=6,(-7,-8)
inverse of f(x)=\sqrt[3]{4x-3}
inverse\:f(x)=\sqrt[3]{4x-3}
domain of f(x)=(x+4)^2-9
domain\:f(x)=(x+4)^{2}-9
range of sqrt(4x+3)
range\:\sqrt{4x+3}
domain of f(x)=x^3+2x^2-3x+1
domain\:f(x)=x^{3}+2x^{2}-3x+1
intercepts of f(x)=(x^2-25)/(-2x^2+9x+5)
intercepts\:f(x)=\frac{x^{2}-25}{-2x^{2}+9x+5}
domain of f(x)=(x-8)/(x^2+14x+45)
domain\:f(x)=\frac{x-8}{x^{2}+14x+45}
slope of y=-2x+3
slope\:y=-2x+3
domain of (x-7)^2
domain\:(x-7)^{2}
inverse of f(x)=ln(2x+3)
inverse\:f(x)=\ln(2x+3)
extreme f(x)=x^4-98x^2+2401
extreme\:f(x)=x^{4}-98x^{2}+2401
range of 9-3^x
range\:9-3^{x}
domain of f(x)=\sqrt[4]{x^4-1}
domain\:f(x)=\sqrt[4]{x^{4}-1}
domain of 1/(sqrt(x^2-6x))
domain\:\frac{1}{\sqrt{x^{2}-6x}}
slope of-2x+y=4
slope\:-2x+y=4
inverse of x/(9x-8)
inverse\:\frac{x}{9x-8}
parity (x^2-1)/(1+cos^2(x))
parity\:\frac{x^{2}-1}{1+\cos^{2}(x)}
range of f(x)=3x^2-5
range\:f(x)=3x^{2}-5
domain of f(x)=sqrt(1+2x)
domain\:f(x)=\sqrt{1+2x}
domain of f(x)=-1/x
domain\:f(x)=-\frac{1}{x}
domain of (x^3)/(\sqrt[3]{1-x^3)}
domain\:\frac{x^{3}}{\sqrt[3]{1-x^{3}}}
inflection 1/3 x^3+x^2-3x-5
inflection\:\frac{1}{3}x^{3}+x^{2}-3x-5
domain of f(x)=x-1/x
domain\:f(x)=x-\frac{1}{x}
extreme f(x)=x^2(x-2)^2(x-1)^2
extreme\:f(x)=x^{2}(x-2)^{2}(x-1)^{2}
asymptotes of f(x)=((x^2+1))/(x^3+1)
asymptotes\:f(x)=\frac{(x^{2}+1)}{x^{3}+1}
inverse of f(x)= 1/27 x^3
inverse\:f(x)=\frac{1}{27}x^{3}
domain of f(x)=sqrt(x^2-2x-8)
domain\:f(x)=\sqrt{x^{2}-2x-8}
shift 4/5 sin(-1/3 x)
shift\:\frac{4}{5}\sin(-\frac{1}{3}x)
domain of f(x)=sqrt(x^4-256)
domain\:f(x)=\sqrt{x^{4}-256}
intercepts of f(x)=2x^2-x+2
intercepts\:f(x)=2x^{2}-x+2
domain of f(x)=(sqrt(3+x))/(7-x)
domain\:f(x)=\frac{\sqrt{3+x}}{7-x}
domain of f(x)=7x-5x^2
domain\:f(x)=7x-5x^{2}
domain of sqrt(36-x^2)+sqrt(x+2)
domain\:\sqrt{36-x^{2}}+\sqrt{x+2}
inverse of x^3-1
inverse\:x^{3}-1
domain of f(x)=sqrt(x+2)*(x^2)/(x-4)
domain\:f(x)=\sqrt{x+2}\cdot\:\frac{x^{2}}{x-4}
slope of 2y=5
slope\:2y=5
slope of-1-2
slope\:-1-2
asymptotes of (x^2-9)/(x^2-4x+3)
asymptotes\:\frac{x^{2}-9}{x^{2}-4x+3}
domain of-1/(2sqrt(2-x))
domain\:-\frac{1}{2\sqrt{2-x}}
parallel 3x-4=0,(2,4)
parallel\:3x-4=0,(2,4)
asymptotes of f(x)=((x-1))/((x+1)^2)
asymptotes\:f(x)=\frac{(x-1)}{(x+1)^{2}}
shift f(x)=5sin(1/2 x+(3pi)/4)
shift\:f(x)=5\sin(\frac{1}{2}x+\frac{3π}{4})
asymptotes of f(x)= 1/((x-1))
asymptotes\:f(x)=\frac{1}{(x-1)}
1
..
251
252
253
254
255
..
1324