domain of f(x)= 1/2 x+pi
|
domain\:f(x)=\frac{1}{2}x+π
|
domain of f(x)= 8/(x+2)
|
domain\:f(x)=\frac{8}{x+2}
|
domain of sqrt(3x-24)
|
domain\:\sqrt{3x-24}
|
domain of f(x)=2-4/x
|
domain\:f(x)=2-\frac{4}{x}
|
domain of sqrt(3-x)+sqrt(16-x^2)
|
domain\:\sqrt{3-x}+\sqrt{16-x^{2}}
|
domain of f(x)=(4x)/(-3x+1)
|
domain\:f(x)=\frac{4x}{-3x+1}
|
distance (-2,4)(13,10)
|
distance\:(-2,4)(13,10)
|
domain of f(x)=2sqrt(x-5+7)
|
domain\:f(x)=2\sqrt{x-5+7}
|
domain of f(x)=cos(x-pi/2)
|
domain\:f(x)=\cos(x-\frac{π}{2})
|
domain of (-4-6x)/(9x-5)
|
domain\:\frac{-4-6x}{9x-5}
|
domain of f(x)=5x-2y+8>= 0
|
domain\:f(x)=5x-2y+8\ge\:0
|
domain of g(x)=2x-5
|
domain\:g(x)=2x-5
|
domain of f(x)= 4/(3x-x^2)
|
domain\:f(x)=\frac{4}{3x-x^{2}}
|
domain of 1/(sqrt(-x^2+6x))
|
domain\:\frac{1}{\sqrt{-x^{2}+6x}}
|
domain of f(x)=(-4x^2)/((x-3)(x+1))
|
domain\:f(x)=\frac{-4x^{2}}{(x-3)(x+1)}
|
domain of h(x)=ln(x+6)
|
domain\:h(x)=\ln(x+6)
|
domain of f(x)=(3x)/(x-8)
|
domain\:f(x)=\frac{3x}{x-8}
|
domain of f(x)=-4x+1=-5
|
domain\:f(x)=-4x+1=-5
|
domain of y=sqrt(1-(x^2)/9)
|
domain\:y=\sqrt{1-\frac{x^{2}}{9}}
|
domain of 1/3 (x-2.1)^2+7.9
|
domain\:\frac{1}{3}(x-2.1)^{2}+7.9
|
domain of ln(-(-6-3x^2)/(x^2+1))
|
domain\:\ln(-\frac{-6-3x^{2}}{x^{2}+1})
|
domain of f(x)=-sqrt(1/2 x^2+2x)
|
domain\:f(x)=-\sqrt{\frac{1}{2}x^{2}+2x}
|
domain of f(x)=(2x-1)/(2x+1)
|
domain\:f(x)=\frac{2x-1}{2x+1}
|
domain of f(x)=(x-9)/(sqrt(x-2))
|
domain\:f(x)=\frac{x-9}{\sqrt{x-2}}
|
domain of x/(\sqrt[4]{x^2-5x)}
|
domain\:\frac{x}{\sqrt[4]{x^{2}-5x}}
|
domain of f(t)= 1/(sqrt(t))
|
domain\:f(t)=\frac{1}{\sqrt{t}}
|
range of y=sqrt(4-x)
|
range\:y=\sqrt{4-x}
|
domain of f(x)=\sqrt[3]{-x}
|
domain\:f(x)=\sqrt[3]{-x}
|
domain of f(x)= 2/(2+2^{1/x)}
|
domain\:f(x)=\frac{2}{2+2^{\frac{1}{x}}}
|
domain of f(x)=(x-2)/(x^2+2x-8)
|
domain\:f(x)=\frac{x-2}{x^{2}+2x-8}
|
domain of f(x)=2x^{(3)}+3x^{(2)}-12x-7
|
domain\:f(x)=2x^{(3)}+3x^{(2)}-12x-7
|
domain of sqrt(-4x+24)
|
domain\:\sqrt{-4x+24}
|
domain of y=-x^2+4x-4
|
domain\:y=-x^{2}+4x-4
|
domain of f(x)= 1/2 x-7
|
domain\:f(x)=\frac{1}{2}x-7
|
domain of f(x)=(2x-1)/(2x+4)
|
domain\:f(x)=\frac{2x-1}{2x+4}
|
domain of f(x)=9t^{-(1/2)}
|
domain\:f(x)=9t^{-(\frac{1}{2})}
|
domain of f(x)=(5x+2)/x
|
domain\:f(x)=\frac{5x+2}{x}
|
extreme points of f(x)=x^3+8x^2+16x+25
|
extreme\:points\:f(x)=x^{3}+8x^{2}+16x+25
|
extreme points of f(x)=x^4-4x^3
|
extreme\:points\:f(x)=x^{4}-4x^{3}
|
domain of f(x)=sqrt((x+8)/2-5)
|
domain\:f(x)=\sqrt{\frac{x+8}{2}-5}
|
domain of f(x)=-3x^4+7x^2-5
|
domain\:f(x)=-3x^{4}+7x^{2}-5
|
domain of sqrt((x-2)/(x+2))
|
domain\:\sqrt{\frac{x-2}{x+2}}
|
domain of sqrt((3x-5)/(x-2))
|
domain\:\sqrt{\frac{3x-5}{x-2}}
|
domain of x-23+(253)/(x+11)
|
domain\:x-23+\frac{253}{x+11}
|
domain of f(x)=log_{2}(3x-6)+1/(x-5)
|
domain\:f(x)=\log_{2}(3x-6)+\frac{1}{x-5}
|
domain of f(x)=3^{x^2+1}
|
domain\:f(x)=3^{x^{2}+1}
|
domain of f(x)=x^2+7x-9
|
domain\:f(x)=x^{2}+7x-9
|
domain of 2sin(x)+cos(2x)
|
domain\:2\sin(x)+\cos(2x)
|
domain of f(x)=(3x-4)/(2x+3)
|
domain\:f(x)=\frac{3x-4}{2x+3}
|
domain of f(x)=9x
|
domain\:f(x)=9x
|
domain of g(x)= 2/(x+3)
|
domain\:g(x)=\frac{2}{x+3}
|
domain of y= 1/((x+1)^3)
|
domain\:y=\frac{1}{(x+1)^{3}}
|
domain of f(x)=(-100.2)
|
domain\:f(x)=(-100.2)
|
domain of g(x)= 2/(x+1)
|
domain\:g(x)=\frac{2}{x+1}
|
domain of 1/(\sqrt[4]{9-x^2)}
|
domain\:\frac{1}{\sqrt[4]{9-x^{2}}}
|
domain of f(x)= 1/(sqrt(x^2+x-2))
|
domain\:f(x)=\frac{1}{\sqrt{x^{2}+x-2}}
|
domain of f(x)=200-x/(30)
|
domain\:f(x)=200-\frac{x}{30}
|
domain of f(x)=-2/(x^2+2x-35)
|
domain\:f(x)=-\frac{2}{x^{2}+2x-35}
|
domain of f(x)=2x+3,x>=-4
|
domain\:f(x)=2x+3,x\ge\:-4
|
domain of xe^{sin(x)}
|
domain\:xe^{\sin(x)}
|
midpoint (6,1)(6,3)
|
midpoint\:(6,1)(6,3)
|
domain of f(x)=2x+2,x>2
|
domain\:f(x)=2x+2,x>2
|
domain of sqrt(x^2+5x+4)
|
domain\:\sqrt{x^{2}+5x+4}
|
domain of f(x)=(sin(x))/(cos(x))
|
domain\:f(x)=\frac{\sin(x)}{\cos(x)}
|
domain of f(x)=(x-3)/(x^2-4)ln(x)
|
domain\:f(x)=\frac{x-3}{x^{2}-4}\ln(x)
|
domain of-6/(x^2)
|
domain\:-\frac{6}{x^{2}}
|
domain of f(x)=sqrt(x^2-x^3)
|
domain\:f(x)=\sqrt{x^{2}-x^{3}}
|
domain of f(x)=tan(1/2 x)
|
domain\:f(x)=\tan(\frac{1}{2}x)
|
domain of sqrt((x^2-2x-48)/(x-1))
|
domain\:\sqrt{\frac{x^{2}-2x-48}{x-1}}
|
domain of f(x)=3x^2+13x+14
|
domain\:f(x)=3x^{2}+13x+14
|
domain of (2x-3)/(x-2)
|
domain\:\frac{2x-3}{x-2}
|
asymptotes of-2(x+2)^2
|
asymptotes\:-2(x+2)^{2}
|
domain of f(x)=1-2cos(x/3+(2pi)/3)
|
domain\:f(x)=1-2\cos(\frac{x}{3}+\frac{2π}{3})
|
domain of f(x)=11-2x
|
domain\:f(x)=11-2x
|
domain of (x+4)/(\sqrt[3]{x+1)}
|
domain\:\frac{x+4}{\sqrt[3]{x+1}}
|
domain of f(x)= 8/(x-8)
|
domain\:f(x)=\frac{8}{x-8}
|
domain of (2x+7)/(\sqrt[3]{9-x)}
|
domain\:\frac{2x+7}{\sqrt[3]{9-x}}
|
domain of f(t)=\sqrt[6]{t-2/(3+5t)}
|
domain\:f(t)=\sqrt[6]{t-\frac{2}{3+5t}}
|
domain of log_{10}(x-6)
|
domain\:\log_{10}(x-6)
|
intercepts of-16/3 x+200
|
intercepts\:-\frac{16}{3}x+200
|
domain of sqrt(y)
|
domain\:\sqrt{y}
|
domain of f(x)=\sqrt[9]{3x+2}
|
domain\:f(x)=\sqrt[9]{3x+2}
|
domain of (sqrt(x+1))/(x-1)
|
domain\:\frac{\sqrt{x+1}}{x-1}
|
domain of-0.025X+0.89
|
domain\:-0.025X+0.89
|
domain of (x^3-1)/(x^2-9)
|
domain\:\frac{x^{3}-1}{x^{2}-9}
|
domain of 3x-x^2
|
domain\:3x-x^{2}
|
domain of f(x)=(9-6x)/(x^3-9x^2-8x)
|
domain\:f(x)=\frac{9-6x}{x^{3}-9x^{2}-8x}
|
domain of (sin(2x))/(1+sin(2x))
|
domain\:\frac{\sin(2x)}{1+\sin(2x)}
|
domain of y=(1-e^{x^2})/(1-e^{1-x^2)}
|
domain\:y=\frac{1-e^{x^{2}}}{1-e^{1-x^{2}}}
|
domain of f(x)=sqrt(x+19)-2
|
domain\:f(x)=\sqrt{x+19}-2
|
domain of f(x)=sqrt((3x-3))
|
domain\:f(x)=\sqrt{(3x-3)}
|
domain of f(x)=sqrt(-8x-3)
|
domain\:f(x)=\sqrt{-8x-3}
|
domain of (14x^2)/(x^4+49)
|
domain\:\frac{14x^{2}}{x^{4}+49}
|
domain of f(x)=y= 1/2 cos(x)-2
|
domain\:f(x)=y=\frac{1}{2}\cos(x)-2
|
domain of log_{5}(sqrt(x))
|
domain\:\log_{5}(\sqrt{x})
|
domain of f(x)=(x-3)/(2x^2+x-21)
|
domain\:f(x)=\frac{x-3}{2x^{2}+x-21}
|
domain of f(x)=(x-6)/(x^2+x-42)
|
domain\:f(x)=\frac{x-6}{x^{2}+x-42}
|
domain of f(x)=(2x-3)/x
|
domain\:f(x)=\frac{2x-3}{x}
|
domain of f(x)=(7x+6)/(x-1)
|
domain\:f(x)=\frac{7x+6}{x-1}
|
domain of f(x)=(log_{10}(x))/(x-2)
|
domain\:f(x)=\frac{\log_{10}(x)}{x-2}
|