You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
AI Chat
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Close
Accept Terms
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
extreme f(x)=sin(7x)
extreme\:f(x)=\sin(7x)
domain of f(x)= 7/2 x-25/2
domain\:f(x)=\frac{7}{2}x-\frac{25}{2}
inverse of f(x)=x^2+6x+4
inverse\:f(x)=x^{2}+6x+4
slope of y= 7/2 x-2
slope\:y=\frac{7}{2}x-2
inverse of (3x)/(5x-3)
inverse\:\frac{3x}{5x-3}
inverse of x-5
inverse\:x-5
domain of f(x)=x^6
domain\:f(x)=x^{6}
asymptotes of x^2+3
asymptotes\:x^{2}+3
slope ofintercept y+3=-1/4 (x+2)
slopeintercept\:y+3=-\frac{1}{4}(x+2)
inverse of f(x)=((4-x))/x
inverse\:f(x)=\frac{(4-x)}{x}
asymptotes of f(x)=(x^2-4)/x
asymptotes\:f(x)=\frac{x^{2}-4}{x}
inverse of f(x)=(9x)/(x-4)
inverse\:f(x)=\frac{9x}{x-4}
inverse of f(a+2)
inverse\:f(a+2)
range of f(x)=log_{8}(x)
range\:f(x)=\log_{8}(x)
extreme x^2+3x+3
extreme\:x^{2}+3x+3
domain of sqrt(x^2-4x-5)
domain\:\sqrt{x^{2}-4x-5}
inverse of f(x)= 3/8 x-4
inverse\:f(x)=\frac{3}{8}x-4
slope ofintercept 3y-9x=21
slopeintercept\:3y-9x=21
domain of (2x^2+x-1)/(3x^2-11x-4)
domain\:\frac{2x^{2}+x-1}{3x^{2}-11x-4}
line (0,5),(6,0)
line\:(0,5),(6,0)
line (-8,-1),(-1,-2)
line\:(-8,-1),(-1,-2)
asymptotes of f(x)=(x-7)/(x+5)
asymptotes\:f(x)=\frac{x-7}{x+5}
asymptotes of f(x)=(x+3)/(x(x+9))
asymptotes\:f(x)=\frac{x+3}{x(x+9)}
inverse of y=x+4
inverse\:y=x+4
domain of (-e^{-x})/(1+e^{-x)}
domain\:\frac{-e^{-x}}{1+e^{-x}}
domain of f(x)=(3+4x)/(x-1)
domain\:f(x)=\frac{3+4x}{x-1}
inflection f(x)=x^4-4x^3+3
inflection\:f(x)=x^{4}-4x^{3}+3
perpendicular y=-3/4 x
perpendicular\:y=-\frac{3}{4}x
inverse of f(x)=8x^3+1
inverse\:f(x)=8x^{3}+1
inverse of f(x)= 1/(x-2)
inverse\:f(x)=\frac{1}{x-2}
inverse of f(x)= 2/3 x+2
inverse\:f(x)=\frac{2}{3}x+2
domain of f(x)=4x-3x^2
domain\:f(x)=4x-3x^{2}
domain of f(x)=3x-1
domain\:f(x)=3x-1
domain of f(x)=2x+9
domain\:f(x)=2x+9
domain of f(x)=1+ln(-x)
domain\:f(x)=1+\ln(-x)
slope of y=x-2
slope\:y=x-2
inverse of f(x)=(3x)/(5+x^2)
inverse\:f(x)=\frac{3x}{5+x^{2}}
inverse of f(x)=e^{8x-9}
inverse\:f(x)=e^{8x-9}
asymptotes of f(x)=(x-2)/(x+3)
asymptotes\:f(x)=\frac{x-2}{x+3}
monotone f(x)=e^{-2x^2}
monotone\:f(x)=e^{-2x^{2}}
shift-3/2 cos(3x-1/2)+2
shift\:-\frac{3}{2}\cos(3x-\frac{1}{2})+2
asymptotes of f(x)=(x^4-324)/(x^2-18)
asymptotes\:f(x)=\frac{x^{4}-324}{x^{2}-18}
domain of f(x)=(x^2)/(x^2+9)
domain\:f(x)=\frac{x^{2}}{x^{2}+9}
inverse of f(x)=e^{y-1}
inverse\:f(x)=e^{y-1}
extreme f(x)=(6x-10)/(x^2-1)
extreme\:f(x)=\frac{6x-10}{x^{2}-1}
inverse of f(x)= 3/7 x-6
inverse\:f(x)=\frac{3}{7}x-6
domain of 1/(-x+4)
domain\:\frac{1}{-x+4}
domain of f(x)=-x^2-1
domain\:f(x)=-x^{2}-1
intercepts of (2x)/(9-x^2)
intercepts\:\frac{2x}{9-x^{2}}
slope ofintercept 8x-4y=16
slopeintercept\:8x-4y=16
asymptotes of f(x)=(2x+3)/(x^3)
asymptotes\:f(x)=\frac{2x+3}{x^{3}}
slope ofintercept 5x+y=3
slopeintercept\:5x+y=3
slope ofintercept x-4y=6
slopeintercept\:x-4y=6
range of f(x)=x^2-6x+9
range\:f(x)=x^{2}-6x+9
domain of f(x)=((2x+4))/(x^2-x-12)
domain\:f(x)=\frac{(2x+4)}{x^{2}-x-12}
domain of f(x)=sqrt(4-x^2)
domain\:f(x)=\sqrt{4-x^{2}}
domain of f(x)=(x(x+1))/(x-1)
domain\:f(x)=\frac{x(x+1)}{x-1}
domain of f(x)=3x-x^2
domain\:f(x)=3x-x^{2}
symmetry y=x^3+2
symmetry\:y=x^{3}+2
critical f(x)=x(x-2)
critical\:f(x)=x(x-2)
domain of (x-4)/(x+4)
domain\:\frac{x-4}{x+4}
inverse of f(x)=(x+2)3
inverse\:f(x)=(x+2)3
inverse of f(x)=-3/((x+8))
inverse\:f(x)=-\frac{3}{(x+8)}
asymptotes of ((x^2))/(x-7)
asymptotes\:\frac{(x^{2})}{x-7}
domain of f(x)=7x-9
domain\:f(x)=7x-9
asymptotes of f(x)=(x^3-8)/(x^2-36)
asymptotes\:f(x)=\frac{x^{3}-8}{x^{2}-36}
domain of f(x)=x^2-2x-5
domain\:f(x)=x^{2}-2x-5
domain of f(x)= x/(x^2-4x+3)
domain\:f(x)=\frac{x}{x^{2}-4x+3}
inverse of f(x)=sqrt(x)-3
inverse\:f(x)=\sqrt{x}-3
inverse of 1-sqrt(x+2)
inverse\:1-\sqrt{x+2}
range of 2x^2-x-6
range\:2x^{2}-x-6
intercepts of f(x)=x^3-64x
intercepts\:f(x)=x^{3}-64x
line (9,4),(-3,3)
line\:(9,4),(-3,3)
domain of f(x)=sqrt(x-2)
domain\:f(x)=\sqrt{x-2}
intercepts of 2x^3-10x^2-8x+40
intercepts\:2x^{3}-10x^{2}-8x+40
domain of f(x)=(sqrt(x+9))/(x-5)
domain\:f(x)=\frac{\sqrt{x+9}}{x-5}
inverse of 6x+6
inverse\:6x+6
intercepts of (x^2-2x-15)/(x^2+4x)
intercepts\:\frac{x^{2}-2x-15}{x^{2}+4x}
inverse of f(x)=(x+2)^2,x>=-2
inverse\:f(x)=(x+2)^{2},x\ge\:-2
slope ofintercept y-4= 1/4 (x+8)
slopeintercept\:y-4=\frac{1}{4}(x+8)
domain of x^2+3x+3
domain\:x^{2}+3x+3
monotone y=3x^3-16x+2
monotone\:y=3x^{3}-16x+2
domain of h(x)=-sqrt(x+3)
domain\:h(x)=-\sqrt{x+3}
domain of f(x)=e^{-x}
domain\:f(x)=e^{-x}
asymptotes of-3x^3+18x^2-3
asymptotes\:-3x^{3}+18x^{2}-3
extreme f(x)=-1/3 x^3+x-12
extreme\:f(x)=-\frac{1}{3}x^{3}+x-12
slope of 13x-11y=-12
slope\:13x-11y=-12
asymptotes of f(x)=(x^2-6x+9)/(x^2+x-2)
asymptotes\:f(x)=\frac{x^{2}-6x+9}{x^{2}+x-2}
domain of y=(x^2+x-6)/(x^2-7x+10)
domain\:y=\frac{x^{2}+x-6}{x^{2}-7x+10}
inverse of y=sqrt(x-1)
inverse\:y=\sqrt{x-1}
inverse of 2sqrt(x)
inverse\:2\sqrt{x}
domain of sqrt(19-x)
domain\:\sqrt{19-x}
slope of x-2y=0
slope\:x-2y=0
domain of f(55)=55t-5t^2
domain\:f(55)=55t-5t^{2}
domain of-8x^2
domain\:-8x^{2}
range of (-1)/(x-1)-1
range\:\frac{-1}{x-1}-1
symmetry y=-2(x-3)2+5
symmetry\:y=-2(x-3)2+5
domain of f(x)=sqrt(-3x+12)
domain\:f(x)=\sqrt{-3x+12}
monotone x^2+2x-1-(2x^2-3x+6)
monotone\:x^{2}+2x-1-(2x^{2}-3x+6)
domain of f(x)= 1/(sqrt(x^2-4x-12))
domain\:f(x)=\frac{1}{\sqrt{x^{2}-4x-12}}
1
..
208
209
210
211
212
..
839