You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
AI Chat
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Close
Accept Terms
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
domain of 4x+1
domain\:4x+1
inverse of-3x+1
inverse\:-3x+1
domain of f(x)=5x^2+4x-9
domain\:f(x)=5x^{2}+4x-9
inverse of f(x)=-x^2-2,x>= 0
inverse\:f(x)=-x^{2}-2,x\ge\:0
range of (10)/(sqrt(1-x))
range\:\frac{10}{\sqrt{1-x}}
symmetry 1/4 x^2
symmetry\:\frac{1}{4}x^{2}
extreme (x-1)/(x^2)
extreme\:\frac{x-1}{x^{2}}
line y=-2x
line\:y=-2x
asymptotes of f(x)=2x
asymptotes\:f(x)=2x
extreme f(x)=x^4-8x^2+3
extreme\:f(x)=x^{4}-8x^{2}+3
extreme 4x^3-48x
extreme\:4x^{3}-48x
extreme (8-x^3)/(2x^2)
extreme\:\frac{8-x^{3}}{2x^{2}}
asymptotes of e^x
asymptotes\:e^{x}
domain of |x-10|
domain\:\left|x-10\right|
range of ln(x)+7
range\:\ln(x)+7
line (3,-8),(6,-4)
line\:(3,-8),(6,-4)
intercepts of (12x+65)/((x+4)^2)
intercepts\:\frac{12x+65}{(x+4)^{2}}
domain of ln(2x-1)
domain\:\ln(2x-1)
domain of f(x)=sqrt(6x-48)
domain\:f(x)=\sqrt{6x-48}
midpoint (-3,3),(5,-1)
midpoint\:(-3,3),(5,-1)
domain of f(x)=((2x+4))/(x-9)
domain\:f(x)=\frac{(2x+4)}{x-9}
inverse of f(x)=-x^2+2
inverse\:f(x)=-x^{2}+2
parity y=(8x)/(3-tan(x))
parity\:y=\frac{8x}{3-\tan(x)}
domain of f(x)=sqrt(1-\sqrt{x)}
domain\:f(x)=\sqrt{1-\sqrt{x}}
domain of f(x)=((x^2+1))/((x+3))
domain\:f(x)=\frac{(x^{2}+1)}{(x+3)}
inverse of x^2-6x
inverse\:x^{2}-6x
shift 3+2sin(6x+pi/4)
shift\:3+2\sin(6x+\frac{π}{4})
range of-3x^2+3x-2
range\:-3x^{2}+3x-2
slope ofintercept 3y+6x=6
slopeintercept\:3y+6x=6
range of f(x)=2-log_{3}(x+1)
range\:f(x)=2-\log_{3}(x+1)
domain of f(x)=sqrt(x^2-7)
domain\:f(x)=\sqrt{x^{2}-7}
inverse of f(x)= 2/(x-6)
inverse\:f(x)=\frac{2}{x-6}
inverse of f(x)= 1/4 (x-2)^2
inverse\:f(x)=\frac{1}{4}(x-2)^{2}
domain of f(x)=-x^2+36
domain\:f(x)=-x^{2}+36
range of (sqrt(1-x^2))/(x^2-9)
range\:\frac{\sqrt{1-x^{2}}}{x^{2}-9}
domain of (-3-sqrt(4x+25))/2
domain\:\frac{-3-\sqrt{4x+25}}{2}
inverse of f(x)=2x-10
inverse\:f(x)=2x-10
domain of f(x)=ln(t+5)
domain\:f(x)=\ln(t+5)
domain of f(x)=(x+6)/((x-7)(x+5))
domain\:f(x)=\frac{x+6}{(x-7)(x+5)}
intercepts of (x^2+x-2)/(x+1)
intercepts\:\frac{x^{2}+x-2}{x+1}
inverse of arcsec(x)
inverse\:\arcsec(x)
f(x)= 3/4 x-1
f(x)=\frac{3}{4}x-1
domain of (x+7)/(x^2-9)
domain\:\frac{x+7}{x^{2}-9}
slope of 4x-3y=4
slope\:4x-3y=4
inverse of f(x)=x^2+7
inverse\:f(x)=x^{2}+7
symmetry-3x^2+5x+4
symmetry\:-3x^{2}+5x+4
domain of f(x)=(x^2-2x+1)/(5-x)
domain\:f(x)=\frac{x^{2}-2x+1}{5-x}
slope ofintercept-5x+10y=20
slopeintercept\:-5x+10y=20
asymptotes of ((x^3+27))/(x^2+4)
asymptotes\:\frac{(x^{3}+27)}{x^{2}+4}
inverse of f(x)=(x+2)/x
inverse\:f(x)=\frac{x+2}{x}
asymptotes of (5x+10)/(-2x^2-6x-4)
asymptotes\:\frac{5x+10}{-2x^{2}-6x-4}
critical sin(6x),0<= x<= 2pi
critical\:\sin(6x),0\le\:x\le\:2π
parallel y=6x-5
parallel\:y=6x-5
parity sqrt(1+x^{2/3)-x}
parity\:\sqrt{1+x^{\frac{2}{3}}-x}
range of f(x)=3(1/4)^x
range\:f(x)=3(\frac{1}{4})^{x}
symmetry-2x^3+2x+1
symmetry\:-2x^{3}+2x+1
domain of f(x)=4x^2-2x-12
domain\:f(x)=4x^{2}-2x-12
extreme y=(2-x)
extreme\:y=(2-x)
intercepts of f(x)=4x-6y=24
intercepts\:f(x)=4x-6y=24
symmetry y=x^3-2x
symmetry\:y=x^{3}-2x
range of 1/3 x-7/3
range\:\frac{1}{3}x-\frac{7}{3}
asymptotes of 2
asymptotes\:2
inverse of f(x)=x-3
inverse\:f(x)=x-3
y=2x+3
y=2x+3
asymptotes of y=(x+3)/(x^4-81)
asymptotes\:y=\frac{x+3}{x^{4}-81}
domain of h(x)=(x^2+7)/(x^2+2x-48)
domain\:h(x)=\frac{x^{2}+7}{x^{2}+2x-48}
critical (2x^2-5x+5)/(x-2)
critical\:\frac{2x^{2}-5x+5}{x-2}
shift cos(x)-1
shift\:\cos(x)-1
domain of x/(-x-2)
domain\:\frac{x}{-x-2}
y=1-x^2
y=1-x^{2}
distance (-6, 5/13),(6, 5/13)
distance\:(-6,\frac{5}{13}),(6,\frac{5}{13})
domain of f(x)=ln(x)+5
domain\:f(x)=\ln(x)+5
line (2,-9),(4,1)
line\:(2,-9),(4,1)
inverse of 1/2 (x-1)^3+3
inverse\:\frac{1}{2}(x-1)^{3}+3
domain of f(x)=(3x-4)/(x^2-7x+12)
domain\:f(x)=\frac{3x-4}{x^{2}-7x+12}
parity f(-1)=(tan(x+2))/((x+2)^2)
parity\:f(-1)=\frac{\tan(x+2)}{(x+2)^{2}}
periodicity of f(x)=2sin(3x-pi)+4
periodicity\:f(x)=2\sin(3x-π)+4
midpoint (-1,-6),(3,0)
midpoint\:(-1,-6),(3,0)
range of f(x)=3x+5
range\:f(x)=3x+5
extreme f(x)=x^3-4x^2+10
extreme\:f(x)=x^{3}-4x^{2}+10
intercepts of f(x)=19x^2+4y=76
intercepts\:f(x)=19x^{2}+4y=76
midpoint (5,2),(2,-1)
midpoint\:(5,2),(2,-1)
inverse of f(x)=sqrt(-1-x)
inverse\:f(x)=\sqrt{-1-x}
line (0,1),(9,10)
line\:(0,1),(9,10)
domain of f(x)=-2x+7
domain\:f(x)=-2x+7
domain of 16-(20x+15)^2
domain\:16-(20x+15)^{2}
inverse of f(x)=2^{x+4}-3
inverse\:f(x)=2^{x+4}-3
range of f(x)=-2-x^2
range\:f(x)=-2-x^{2}
asymptotes of f(x)=-(16)/x
asymptotes\:f(x)=-\frac{16}{x}
domain of f(x)=(sqrt(x+3))/(x^2-4)
domain\:f(x)=\frac{\sqrt{x+3}}{x^{2}-4}
line (-5,1),(-2.5,6)
line\:(-5,1),(-2.5,6)
range of (5x-2)/(x+9)
range\:\frac{5x-2}{x+9}
intercepts of f(x)=x^2-20x+100
intercepts\:f(x)=x^{2}-20x+100
asymptotes of f(x)=((0.052x))/((0.9+0.048x))
asymptotes\:f(x)=\frac{(0.052x)}{(0.9+0.048x)}
critical 1/3 x^3+2x^2-2
critical\:\frac{1}{3}x^{3}+2x^{2}-2
parity sqrt(x^3-12x^2+36x+8)
parity\:\sqrt{x^{3}-12x^{2}+36x+8}
perpendicular y= 1/7 x+9,(2,5)
perpendicular\:y=\frac{1}{7}x+9,(2,5)
intercepts of f(x)=3x-4y=-8
intercepts\:f(x)=3x-4y=-8
domain of f(x)=1.5(2)^x
domain\:f(x)=1.5(2)^{x}
domain of f(x)=(sqrt(x-1))/((x+2)(x-3))
domain\:f(x)=\frac{\sqrt{x-1}}{(x+2)(x-3)}
1
..
207
208
209
210
211
..
839