domain of f(x)= 9/(sqrt(x+2))
|
domain\:f(x)=\frac{9}{\sqrt{x+2}}
|
inverse of f(x)=ln(3-2x)
|
inverse\:f(x)=\ln(3-2x)
|
inverse of ,y=(9x^3+2)/(-2x^3+3)
|
inverse\:,y=\frac{9x^{3}+2}{-2x^{3}+3}
|
inverse of f(x)=(ln(x/(34)))/(0.003)
|
inverse\:f(x)=\frac{\ln(\frac{x}{34})}{0.003}
|
inverse of f(y)=sqrt(y-y^2)
|
inverse\:f(y)=\sqrt{y-y^{2}}
|
inverse of f(x)=-x^2+3x-2,x=-2
|
inverse\:f(x)=-x^{2}+3x-2,x=-2
|
inverse of 2pi(x)^2+8pi(x)
|
inverse\:2π(x)^{2}+8π(x)
|
inverse of f(x)=-5000x+60000
|
inverse\:f(x)=-5000x+60000
|
inverse of f(x)=5+3e^{(2x)}
|
inverse\:f(x)=5+3e^{(2x)}
|
inverse of f(x)=3x^3-13
|
inverse\:f(x)=3x^{3}-13
|
inverse of f(x)=4x^2+6x-12
|
inverse\:f(x)=4x^{2}+6x-12
|
domain of f(x)=sqrt(16+x^2)-sqrt(x+1)
|
domain\:f(x)=\sqrt{16+x^{2}}-\sqrt{x+1}
|
inverse of f(x)=3x-7/8
|
inverse\:f(x)=3x-\frac{7}{8}
|
inverse of f(x)=f(x)=ln(x-1)-ln(2x+1)
|
inverse\:f(x)=f(x)=\ln(x-1)-\ln(2x+1)
|
inverse of+cos(3θ)
|
inverse\:+\cos(3θ)
|
inverse of y=2\sqrt[3]{x}
|
inverse\:y=2\sqrt[3]{x}
|
inverse of f(x)=x^{5/7}-8
|
inverse\:f(x)=x^{\frac{5}{7}}-8
|
inverse of f(x)=sqrt(11x+12)
|
inverse\:f(x)=\sqrt{11x+12}
|
inverse of f(x)=x^{5/7}-4
|
inverse\:f(x)=x^{\frac{5}{7}}-4
|
inverse of 1/(1-z^{-1)}
|
inverse\:\frac{1}{1-z^{-1}}
|
inverse of f(x)=1+sqrt(2)+3x
|
inverse\:f(x)=1+\sqrt{2}+3x
|
inverse of x-8
|
inverse\:x-8
|
domain of f(x)=-2^x+1
|
domain\:f(x)=-2^{x}+1
|
inverse of z/(z-pi)((5-pi))/(z-5)
|
inverse\:\frac{z}{z-π}\frac{(5-π)}{z-5}
|
inverse of (3x-2x^2)^3
|
inverse\:(3x-2x^{2})^{3}
|
inverse of-sqrt(2-x)+1
|
inverse\:-\sqrt{2-x}+1
|
inverse of sqrt(9-x)+4
|
inverse\:\sqrt{9-x}+4
|
inverse of f(x)=4x^2+12x+10
|
inverse\:f(x)=4x^{2}+12x+10
|
inverse of f(x)=2x+3sqrt(5-x)
|
inverse\:f(x)=2x+3\sqrt{5-x}
|
inverse of y=175-4x
|
inverse\:y=175-4x
|
inverse of f(x)=(sqrt(x-3))/x >= 3
|
inverse\:f(x)=\frac{\sqrt{x-3}}{x}\ge\:3
|
inverse of f(x)=4(2)^x
|
inverse\:f(x)=4(2)^{x}
|
inverse of f(x)=e^{x+2}+1
|
inverse\:f(x)=e^{x+2}+1
|
inverse of d/d-2x+3
|
inverse\:\frac{d}{d}-2x+3
|
inverse of f(x)=sqrt(1/(x-4))
|
inverse\:f(x)=\sqrt{\frac{1}{x-4}}
|
inverse of f(x)=e^{x+2}+5
|
inverse\:f(x)=e^{x+2}+5
|
inverse of f(x)=sqrt(((2x^2))/(x^2-2))
|
inverse\:f(x)=\sqrt{\frac{(2x^{2})}{x^{2}-2}}
|
inverse of f(x)=((4x+7))/5
|
inverse\:f(x)=\frac{(4x+7)}{5}
|
inverse of f(x)=-8x+7
|
inverse\:f(x)=-8x+7
|
inverse of f(x)=(-6)/(5-2x)
|
inverse\:f(x)=\frac{-6}{5-2x}
|
inverse of (4x)/(6x-5)
|
inverse\:\frac{4x}{6x-5}
|
inverse of f(t)=-4(6t)+7
|
inverse\:f(t)=-4(6t)+7
|
inverse of f(x)=10^{x-1}
|
inverse\:f(x)=10^{x-1}
|
critical points of f(x)=(x^2)/(x^2-9)
|
critical\:points\:f(x)=\frac{x^{2}}{x^{2}-9}
|
inverse of x^2+a
|
inverse\:x^{2}+a
|
inverse of f(x)=\sqrt[3]{x^3+3}+3
|
inverse\:f(x)=\sqrt[3]{x^{3}+3}+3
|
inverse of-3+3sqrt(2x+3)
|
inverse\:-3+3\sqrt{2x+3}
|
inverse of 1000a(x)
|
inverse\:1000a(x)
|
inverse of f(x)= 5/(6x+7)
|
inverse\:f(x)=\frac{5}{6x+7}
|
inverse of f(x)=(4x-2)/(5x+1)
|
inverse\:f(x)=\frac{4x-2}{5x+1}
|
inverse of f(x)=4-sqrt(1-x)
|
inverse\:f(x)=4-\sqrt{1-x}
|
inverse of f(x)=(y+1)/5+37/60
|
inverse\:f(x)=\frac{y+1}{5}+\frac{37}{60}
|
inverse of log_{10}(x-3)+5
|
inverse\:\log_{10}(x-3)+5
|
inverse of y=(4-3x)^2
|
inverse\:y=(4-3x)^{2}
|
domain of 2/x+x/(x+2)
|
domain\:\frac{2}{x}+\frac{x}{x+2}
|
inverse of f(x)=2e^x+1
|
inverse\:f(x)=2e^{x}+1
|
inverse of f(x)=log_{3}(2x-2)+1
|
inverse\:f(x)=\log_{3}(2x-2)+1
|
inverse of f(x)=(2-x)/(x+5)-3
|
inverse\:f(x)=\frac{2-x}{x+5}-3
|
inverse of f(x)=(x+3)/(2x-5)
|
inverse\:f(x)=\frac{x+3}{2x-5}
|
inverse of f(x)=0.00893-0.004
|
inverse\:f(x)=0.00893-0.004
|
inverse of (60p)/(0.0001p^2+100)
|
inverse\:\frac{60p}{0.0001p^{2}+100}
|
inverse of y=7-2x^3
|
inverse\:y=7-2x^{3}
|
inverse of log_{10}(10^5)
|
inverse\:\log_{10}(10^{5})
|
inverse of y=\sqrt[3]{x/2}
|
inverse\:y=\sqrt[3]{\frac{x}{2}}
|
inverse of f(x)= 1/(sqrt(1+x^2))
|
inverse\:f(x)=\frac{1}{\sqrt{1+x^{2}}}
|
domain of f(x)=x^2-4x+1,x< 2
|
domain\:f(x)=x^{2}-4x+1,x\lt\:2
|
inverse of f(x)=2^x-64
|
inverse\:f(x)=2^{x}-64
|
inverse of f(x)=-t^2+2t+10
|
inverse\:f(x)=-t^{2}+2t+10
|
inverse of f(x)=(200000)/(100+900e^{-x)}
|
inverse\:f(x)=\frac{200000}{100+900e^{-x}}
|
inverse of+sqrt(x^2-7x)
|
inverse\:+\sqrt{x^{2}-7x}
|
inverse of f(x)=ln(x)+1,x>1
|
inverse\:f(x)=\ln(x)+1,x>1
|
inverse of sqrt(5x^4+2x^2)
|
inverse\:\sqrt{5x^{4}+2x^{2}}
|
inverse of 1/(sqrt(x^{11))}
|
inverse\:\frac{1}{\sqrt{x^{11}}}
|
inverse of y=(x-2)/(5x+7)
|
inverse\:y=\frac{x-2}{5x+7}
|
inverse of 231-1
|
inverse\:231-1
|
inverse of f(x)= 1/(y+1)
|
inverse\:f(x)=\frac{1}{y+1}
|
midpoint (2.5,4.6)(9.5,1.6)
|
midpoint\:(2.5,4.6)(9.5,1.6)
|
domain of f(x)=(8x+3)/(8-3x)
|
domain\:f(x)=\frac{8x+3}{8-3x}
|
inverse of e^{piy}
|
inverse\:e^{πy}
|
inverse of+1/(sqrt(x))
|
inverse\:+\frac{1}{\sqrt{x}}
|
inverse of f(x)=70x+48000
|
inverse\:f(x)=70x+48000
|
inverse of f(x)=((x+5))/3
|
inverse\:f(x)=\frac{(x+5)}{3}
|
inverse of f(x)=(x*32)-16
|
inverse\:f(x)=(x\cdot\:32)-16
|
inverse of f(x)=-2x^2-8x+4
|
inverse\:f(x)=-2x^{2}-8x+4
|
inverse of f(x)=4+\sqrt[5]{3x+1}
|
inverse\:f(x)=4+\sqrt[5]{3x+1}
|
inverse of 0.3234ln(x)+0.4893
|
inverse\:0.3234\ln(x)+0.4893
|
inverse of 226
|
inverse\:226
|
inverse of f(x)=-e^{-30x}+1
|
inverse\:f(x)=-e^{-30x}+1
|
inverse of f(x)=100x
|
inverse\:f(x)=100x
|
inverse of (3X-1)/(2X+4)
|
inverse\:\frac{3X-1}{2X+4}
|
inverse of f(x)=-4/84
|
inverse\:f(x)=-\frac{4}{84}
|
inverse of sqrt(6x-4)-17
|
inverse\:\sqrt{6x-4}-17
|
inverse of tan((4.8)/(7.2))
|
inverse\:\tan(\frac{4.8}{7.2})
|
inverse of cos(0.77757)
|
inverse\:\cos(0.77757)
|
inverse of (7x-5)/(5x+1)
|
inverse\:\frac{7x-5}{5x+1}
|
inverse of f(x)=-tan(x+7)-6
|
inverse\:f(x)=-\tan(x+7)-6
|
inverse of f(x)=-tan(x+7)-4
|
inverse\:f(x)=-\tan(x+7)-4
|
critical points of (x^2-2x+4)/(x-1)
|
critical\:points\:\frac{x^{2}-2x+4}{x-1}
|
inverse of f(x)=-tan(x+7)-2
|
inverse\:f(x)=-\tan(x+7)-2
|
inverse of g(x)=log_{2}(x^2+1)
|
inverse\:g(x)=\log_{2}(x^{2}+1)
|