Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
y^'=((1+x))/(xy^{14)}
y^{\prime\:}=\frac{(1+x)}{xy^{14}}
tangent of y=(x^2-15)^4,\at x=4
tangent\:y=(x^{2}-15)^{4},\at\:x=4
derivative of ln(-cos(x^2+1))
\frac{d}{dx}(\ln(-\cos(x^{2})+1))
limit as x approaches 7 of (x-7)^2+x^2
\lim\:_{x\to\:7}((x-7)^{2}+x^{2})
limit as x approaches 0+of ln(1/(x^4))
\lim\:_{x\to\:0+}(\ln(\frac{1}{x^{4}}))
derivative of u(x)=sqrt(x)
derivative\:u(x)=\sqrt{x}
derivative of f(x)=3x^3+15x^2+29x+3
derivative\:f(x)=3x^{3}+15x^{2}+29x+3
integral of 4ln(t)
\int\:4\ln(t)dt
derivative of g(x)=sin(9-3x)
derivative\:g(x)=\sin(9-3x)
derivative of f(x)= x/(9x^2-1)
derivative\:f(x)=\frac{x}{9x^{2}-1}
derivative of ln(sqrt((x+3/(x-3))))
\frac{d}{dx}(\ln(\sqrt{\frac{x+3}{x-3}}))
limit as x approaches 0+of x/(15x^4+12x)
\lim\:_{x\to\:0+}(\frac{x}{15x^{4}+12x})
limit as x approaches 2 of (x^2-4)/(x-3)
\lim\:_{x\to\:2}(\frac{x^{2}-4}{x-3})
integral of ((2-x)/2)^2
\int\:(\frac{2-x}{2})^{2}dx
derivative of 6t
derivative\:6t
derivative of 4/(1-x)
\frac{d}{dx}(\frac{4}{1-x})
y^'=13y-y^2-40
y^{\prime\:}=13y-y^{2}-40
integral of 1/(xsqrt(9x^2-1))
\int\:\frac{1}{x\sqrt{9x^{2}-1}}dx
x^'= 1/(1+t^2)
x^{\prime\:}=\frac{1}{1+t^{2}}
tangent of f(x)=4-2x^2,\at x=5
tangent\:f(x)=4-2x^{2},\at\:x=5
derivative of ((-2x-1)/(-4x+2))^5
derivative\:(\frac{-2x-1}{-4x+2})^{5}
(\partial)/(\partial y)(x^2+xy^4)
\frac{\partial\:}{\partial\:y}(x^{2}+xy^{4})
integral from 1 to x of 1/(sqrt(t))
\int\:_{1}^{x}\frac{1}{\sqrt{t}}dt
integral of 1/((1+sqrt(x))^2)
\int\:\frac{1}{(1+\sqrt{x})^{2}}dx
derivative of y=(x-sqrt(x))/(x^2)
derivative\:y=\frac{x-\sqrt{x}}{x^{2}}
d/(dt)(\sqrt[5]{t}+4sqrt(t^5))
\frac{d}{dt}(\sqrt[5]{t}+4\sqrt{t^{5}})
derivative of 2/(3sqrt(x))
\frac{d}{dx}(\frac{2}{3\sqrt{x}})
y^{'''}-2y^'+y=0
y^{\prime\:\prime\:\prime\:}-2y^{\prime\:}+y=0
integral of-9sin(3x)
\int\:-9\sin(3x)dx
integral of 12xln(3x)
\int\:12x\ln(3x)dx
(dy)/(dt)=ty^{1/3}
\frac{dy}{dt}=ty^{\frac{1}{3}}
derivative of sqrt(2+e^{2t)+e^{-2t}}
derivative\:\sqrt{2+e^{2t}+e^{-2t}}
(\partial)/(\partial x)(36(x/(x+y))-x)
\frac{\partial\:}{\partial\:x}(36(\frac{x}{x+y})-x)
(x^2+1)((dy)/(dx))+8x(y-1)=0,y(0)=6
(x^{2}+1)(\frac{dy}{dx})+8x(y-1)=0,y(0)=6
(\partial)/(\partial x)(2x^3y+1)
\frac{\partial\:}{\partial\:x}(2x^{3}y+1)
limit as x approaches 5 of x+2
\lim\:_{x\to\:5}(x+2)
limit as x approaches 2 of (x-1)^2-1
\lim\:_{x\to\:2}((x-1)^{2}-1)
derivative of (x+2)/(10-3x)
derivative\:\frac{x+2}{10-3x}
derivative of xe^{9xy}
\frac{d}{dx}(xe^{9xy})
integral of (2x-3)/(x^2+6x+13)
\int\:\frac{2x-3}{x^{2}+6x+13}dx
derivative of (x^2)/3
derivative\:\frac{x^{2}}{3}
slope of (-12,5),(-4,-1)
slope\:(-12,5),(-4,-1)
area f(x)=x^2-12,g(x)=x-6
area\:f(x)=x^{2}-12,g(x)=x-6
(\partial)/(\partial x)(sin(4x^3y-6xy^2))
\frac{\partial\:}{\partial\:x}(\sin(4x^{3}y-6xy^{2}))
derivative of 2(e^{3x}+3e^{3x}x)
\frac{d}{dx}(2(e^{3x}+3e^{3x}x))
slope ofintercept (7.7)(12.11)
slopeintercept\:(7.7)(12.11)
limit as x approaches 0 of (x^3+4)/(x-2)
\lim\:_{x\to\:0}(\frac{x^{3}+4}{x-2})
integral of xsqrt(5x-2)
\int\:x\sqrt{5x-2}dx
integral of-2sin(x)
\int\:-2\sin(x)dx
derivative of f(x)=2x^4-5x^{7/2}+3
derivative\:f(x)=2x^{4}-5x^{\frac{7}{2}}+3
integral of 0.5ln(x)
\int\:0.5\ln(x)dx
limit as x approaches 1 of x^2+4x+3
\lim\:_{x\to\:1}(x^{2}+4x+3)
integral from 0 to 4 of sqrt(x)-x/2
\int\:_{0}^{4}\sqrt{x}-\frac{x}{2}dx
inverse oflaplace 4s-1
inverselaplace\:4s-1
tangent of f(x)=2x^2+4x,(-3,6)
tangent\:f(x)=2x^{2}+4x,(-3,6)
limit as x approaches 1 of ln(x^5-1)
\lim\:_{x\to\:1}(\ln(x^{5}-1))
integral from 0 to 1 of pi(x-x^{12})
\int\:_{0}^{1}π(x-x^{12})dx
integral of (3x^2-x+2e)/(x^2)
\int\:\frac{3x^{2}-x+2e}{x^{2}}dx
integral from 2 to 3 of pi(x+x^2)^2
\int\:_{2}^{3}π(x+x^{2})^{2}dx
tangent of f(x)= 11/2-x^2,\at x=-2
tangent\:f(x)=\frac{11}{2}-x^{2},\at\:x=-2
integral of cos(2x-3)
\int\:\cos(2x-3)dx
sum from k=0 to infinity of (1/2)^{2k+1}
\sum\:_{k=0}^{\infty\:}(\frac{1}{2})^{2k+1}
derivative of (x(x-1)(x-2)(x-3))/(24)
derivative\:\frac{x(x-1)(x-2)(x-3)}{24}
(\partial)/(\partial x)(e^{2x}-2y)
\frac{\partial\:}{\partial\:x}(e^{2x}-2y)
y^'=((t-y))/2
y^{\prime\:}=\frac{(t-y)}{2}
integral of cos(x)(6+7sin^2(x))
\int\:\cos(x)(6+7\sin^{2}(x))dx
derivative of 1/((1+x^2^2))
\frac{d}{dx}(\frac{1}{(1+x^{2})^{2}})
(\partial)/(\partial x)(z/x ln(y)+ln(x))
\frac{\partial\:}{\partial\:x}(\frac{z}{x}\ln(y)+\ln(x))
integral of x/(2+sqrt(x))
\int\:\frac{x}{2+\sqrt{x}}dx
derivative of f(x)=(-x^3-x^2+x)cos(x)
derivative\:f(x)=(-x^{3}-x^{2}+x)\cos(x)
(dy)/(dx)=x+1/5 y
\frac{dy}{dx}=x+\frac{1}{5}y
derivative of (x^2-4/(x+1))
\frac{d}{dx}(\frac{x^{2}-4}{x+1})
(d^2y)/(dx^2)-(dy)/(dx)+y=0
\frac{d^{2}y}{dx^{2}}-\frac{dy}{dx}+y=0
derivative of f(x)=x^8-46
derivative\:f(x)=x^{8}-46
(dy)/(dx)(y^{-2})+y^{-1}=2x
\frac{dy}{dx}(y^{-2})+y^{-1}=2x
integral of (100)/(x^3-10x^2)
\int\:\frac{100}{x^{3}-10x^{2}}dx
integral from-6 to 6 of pi(36-x^2)
\int\:_{-6}^{6}π(36-x^{2})dx
(dy)/(dx)+1/x y=6x^2
\frac{dy}{dx}+\frac{1}{x}y=6x^{2}
tangent of f(x)= 1/((1+x^2)),\at x=-1
tangent\:f(x)=\frac{1}{(1+x^{2})},\at\:x=-1
limit as x approaches-10 of (+)f(x)
\lim\:_{x\to\:-10}((+)f(x))
(\partial)/(\partial y)(e^{13xy})
\frac{\partial\:}{\partial\:y}(e^{13xy})
(\partial)/(\partial x)((2y^2)/(x^2+y))
\frac{\partial\:}{\partial\:x}(\frac{2y^{2}}{x^{2}+y})
y^{''}+9y=2sin(2t)
y^{\prime\:\prime\:}+9y=2\sin(2t)
area x^2,sqrt(x),0,1
area\:x^{2},\sqrt{x},0,1
(dy)/(dx)=y(550-y)
\frac{dy}{dx}=y(550-y)
integral of 1/(sin^2(a)x)+c
\int\:\frac{1}{\sin^{2}(a)x}+cdx
integral of (25sqrt(x^2-16))/(x^4)
\int\:\frac{25\sqrt{x^{2}-16}}{x^{4}}dx
derivative of y= 2/(3x^4)
derivative\:y=\frac{2}{3x^{4}}
derivative of e^{2x}(2x+3)^7
derivative\:e^{2x}(2x+3)^{7}
(\partial)/(\partial t)(x)
\frac{\partial\:}{\partial\:t}(x)
xdy=(2xe^x-y+6x^2)dx
xdy=(2xe^{x}-y+6x^{2})dx
integral of sqrt(2)e^x
\int\:\sqrt{2}e^{x}dx
integral of (3x+1)^{sqrt(2)}
\int\:(3x+1)^{\sqrt{2}}dx
limit as t approaches 1 of ln(t)
\lim\:_{t\to\:1}(\ln(t))
(\partial)/(\partial y)(xe^y+cos(y))
\frac{\partial\:}{\partial\:y}(xe^{y}+\cos(y))
(\partial}{\partial y}(\frac{3x^2)/y)
\frac{\partial\:}{\partial\:y}(\frac{3x^{2}}{y})
limit as x approaches 5+of 1/((x-5)^2)
\lim\:_{x\to\:5+}(\frac{1}{(x-5)^{2}})
derivative of f(x)=sqrt((1+x)/(1-x))
derivative\:f(x)=\sqrt{\frac{1+x}{1-x}}
limit as x approaches 1 of e^{4x^2-4x}
\lim\:_{x\to\:1}(e^{4x^{2}-4x})
integral of x^2sqrt(2x+3)
\int\:x^{2}\sqrt{2x+3}dx
1
..
755
756
757
758
759
..
1823