Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of e^x(x-3)
\frac{d}{dx}(e^{x}(x-3))
area sqrt(x), 1/2 x,9
area\:\sqrt{x},\frac{1}{2}x,9
limit as x approaches-1+of 2x^3-2m
\lim\:_{x\to\:-1+}(2x^{3}-2m)
derivative of f(x)=5e^{2x}
derivative\:f(x)=5e^{2x}
(dy)/(dx)=(e^x)/(8+e^x)
\frac{dy}{dx}=\frac{e^{x}}{8+e^{x}}
derivative of e^{6x^2}
\frac{d}{dx}(e^{6x^{2}})
integral from 0 to 5 of 1/(x^{14/15)}
\int\:_{0}^{5}\frac{1}{x^{\frac{14}{15}}}dx
x^{''}-4x=0
x^{\prime\:\prime\:}-4x=0
integral of sin(t)*t
\int\:\sin(t)\cdot\:tdt
limit as x approaches 2 of x^2+8x-2
\lim\:_{x\to\:2}(x^{2}+8x-2)
integral from-1/2 to 1/2 of 1/(1-x^2)
\int\:_{-\frac{1}{2}}^{\frac{1}{2}}\frac{1}{1-x^{2}}dx
y^'=(x*y)/(1+x^2)
y^{\prime\:}=\frac{x\cdot\:y}{1+x^{2}}
integral of (x^3+x^2)^9(3x^2+2x)
\int\:(x^{3}+x^{2})^{9}(3x^{2}+2x)dx
integral of 7e^{4x}cos(8x)
\int\:7e^{4x}\cos(8x)dx
derivative of f(x)=2x-5
derivative\:f(x)=2x-5
integral of (108)/(w^2sqrt(36-w^2))
\int\:\frac{108}{w^{2}\sqrt{36-w^{2}}}dw
(dy)/(dx)=0.06y-24000
\frac{dy}{dx}=0.06y-24000
limit as x approaches infinity of 5.3
\lim\:_{x\to\:\infty\:}(5.3)
(\partial)/(\partial y)(yze^{xz})
\frac{\partial\:}{\partial\:y}(yze^{xz})
integral of sin((pit)/2)
\int\:\sin(\frac{πt}{2})dt
y^{''}-2/(t^2)y=0,y(-1)=-1,y^'(-1)=-4
y^{\prime\:\prime\:}-\frac{2}{t^{2}}y=0,y(-1)=-1,y^{\prime\:}(-1)=-4
integral of (2x^2+x+1)/((x+3)(x-1)^2)
\int\:\frac{2x^{2}+x+1}{(x+3)(x-1)^{2}}dx
sum from n=1 to infinity of 16^nx^nn!
\sum\:_{n=1}^{\infty\:}16^{n}x^{n}n!
integral of xsqrt(x^2+7)
\int\:x\sqrt{x^{2}+7}dx
integral of 1/(2000(2000-x))
\int\:\frac{1}{2000(2000-x)}dx
derivative of f(x)=x^a(1-x)^b
derivative\:f(x)=x^{a}(1-x)^{b}
tangent of f(x)=9-4x+6x^2,\at x=8
tangent\:f(x)=9-4x+6x^{2},\at\:x=8
(\partial)/(\partial y)(y^2e^{xy^2})
\frac{\partial\:}{\partial\:y}(y^{2}e^{xy^{2}})
integral of zsin(x)
\int\:z\sin(x)dy
tangent of 1/3 x^3+7/2 x^2-3x+5
tangent\:\frac{1}{3}x^{3}+\frac{7}{2}x^{2}-3x+5
f(t)=tan(t)
f(t)=\tan(t)
limit as x approaches 1 of e^{x^2-x}
\lim\:_{x\to\:1}(e^{x^{2}-x})
integral of sin^{12}(x)
\int\:\sin^{12}(x)dx
derivative of x-5sin(x)
\frac{d}{dx}(x-5\sin(x))
(d^2)/(dx^2)(sqrt(x+10))
\frac{d^{2}}{dx^{2}}(\sqrt{x+10})
derivative of x^{4/x}
\frac{d}{dx}(x^{\frac{4}{x}})
y^'=x(7-y)
y^{\prime\:}=x(7-y)
limit as x approaches 0 of 5(x-3)ln(x-3)
\lim\:_{x\to\:0}(5(x-3)\ln(x-3))
integral from-infinity to 0 of x/(1+x^2)
\int\:_{-\infty\:}^{0}\frac{x}{1+x^{2}}dx
derivative of (x^2/(x^2))
\frac{d}{dx}(\frac{x^{2}}{x^{2}})
derivative of (x^2+1\sqrt[3]{x^2+2})
\frac{d}{dx}((x^{2}+1)\sqrt[3]{x^{2}+2})
derivative of-3/x
derivative\:-\frac{3}{x}
integral of (x+4)/((x^2+8x-7)^2)
\int\:\frac{x+4}{(x^{2}+8x-7)^{2}}dx
d/(dt)(t+2)
\frac{d}{dt}(t+2)
integral of (3x-2)^5
\int\:(3x-2)^{5}dx
derivative of f(x)= 3/(\sqrt[4]{x)}
derivative\:f(x)=\frac{3}{\sqrt[4]{x}}
derivative of arcsin(sqrt(x))
derivative\:\arcsin(\sqrt{x})
(d^2)/(dx^2)(2xcos(x^2))
\frac{d^{2}}{dx^{2}}(2x\cos(x^{2}))
integral from 8 to 14 of y/(y^2-4y-5)
\int\:_{8}^{14}\frac{y}{y^{2}-4y-5}dy
y^'=e^{-2x}
y^{\prime\:}=e^{-2x}
tangent of f(x)=x^2+1
tangent\:f(x)=x^{2}+1
7y^{''}+5y^'+7y=0
7y^{\prime\:\prime\:}+5y^{\prime\:}+7y=0
limit as h approaches 0 of (4/(2+h)-2)/h
\lim\:_{h\to\:0}(\frac{\frac{4}{2+h}-2}{h})
area x=1-y^2,-x-1
area\:x=1-y^{2},-x-1
derivative of sqrt(2{p)(xx})
\frac{d}{dx}(\sqrt{2{p}(x)x})
derivative of arctan(x/3)
derivative\:\arctan(\frac{x}{3})
derivative of f(x)=x+sqrt(x)+2
derivative\:f(x)=x+\sqrt{x}+2
(\partial)/(\partial x)(xy(x-2)(y+3))
\frac{\partial\:}{\partial\:x}(xy(x-2)(y+3))
integral of xln(x+5)
\int\:x\ln(x+5)dx
(\partial)/(\partial x)(ln(x^2+y^5))
\frac{\partial\:}{\partial\:x}(\ln(x^{2}+y^{5}))
integral of ln(sqrt(x+2))
\int\:\ln(\sqrt{x+2})dx
integral of 7x^3e^x
\int\:7x^{3}e^{x}dx
tangent of f(x)=x^2-3x+4,\at x=1
tangent\:f(x)=x^{2}-3x+4,\at\:x=1
(dy)/(dt)+2ty=2te^{-t^2}
\frac{dy}{dt}+2ty=2te^{-t^{2}}
(\partial)/(\partial z)(xycos(z))
\frac{\partial\:}{\partial\:z}(xy\cos(z))
integral of x^6-4x^4+x+1
\int\:x^{6}-4x^{4}+x+1dx
integral of (t^5)/(sqrt(t^2+10))
\int\:\frac{t^{5}}{\sqrt{t^{2}+10}}dt
(dy)/(dx)=0.5(100-y)
\frac{dy}{dx}=0.5(100-y)
integral from 1 to 5 of sqrt(x)ln(x)
\int\:_{1}^{5}\sqrt{x}\ln(x)dx
derivative of f(x)=x(x+3)^2
derivative\:f(x)=x(x+3)^{2}
y^'-2y=7
y^{\prime\:}-2y=7
(\partial)/(\partial x)(x+yz)
\frac{\partial\:}{\partial\:x}(x+yz)
derivative of 6+x
\frac{d}{dx}(6+x)
limit as x approaches 0 of (8/(1+x)-8)/x
\lim\:_{x\to\:0}(\frac{\frac{8}{1+x}-8}{x})
integral of (1-(x+2)cot(x))/(sin(x))
\int\:\frac{1-(x+2)\cot(x)}{\sin(x)}dx
derivative of log_{6}(x^2-5x)
derivative\:\log_{6}(x^{2}-5x)
integral from 0 to pi/3 of 7sec^2(x)
\int\:_{0}^{\frac{π}{3}}7\sec^{2}(x)dx
(\partial)/(\partial x)(3ln(x))
\frac{\partial\:}{\partial\:x}(3\ln(x))
area (sqrt(x+6)),x,-2,3
area\:(\sqrt{x+6}),x,-2,3
integral of sec^6(x)tan(x)
\int\:\sec^{6}(x)\tan(x)dx
derivative of y=sqrt(ln(7x))
derivative\:y=\sqrt{\ln(7x)}
derivative of e^{x^3+3x}
\frac{d}{dx}(e^{x^{3}+3x})
limit as x approaches 2 of (|x-2|)/2
\lim\:_{x\to\:2}(\frac{\left|x-2\right|}{2})
slope of 10(1.05)^x
slope\:10(1.05)^{x}
integral from 0 to pi of cos(t)sin(t)
\int\:_{0}^{π}\cos(t)\sin(t)dt
sum from n=0 to infinity of (x^n)/n
\sum\:_{n=0}^{\infty\:}\frac{x^{n}}{n}
derivative of 3,x
\frac{d}{dx}(3,x)
limit as x approaches+0 of (sqrt(x))/x
\lim\:_{x\to\:+0}(\frac{\sqrt{x}}{x})
derivative of (x^3-3xln(2x+1))
\frac{d}{dx}((x^{3}-3x)\ln(2x+1))
y^{''}-2y^'+10y=x^2*e^x
y^{\prime\:\prime\:}-2y^{\prime\:}+10y=x^{2}\cdot\:e^{x}
tangent of f(x)=(5x-x^2)(5-x-x^2),\at x=1
tangent\:f(x)=(5x-x^{2})(5-x-x^{2}),\at\:x=1
tangent of f(x)=sqrt(x-3)
tangent\:f(x)=\sqrt{x-3}
laplacetransform 1/2 cos(2t)
laplacetransform\:\frac{1}{2}\cos(2t)
integral of 1/(usqrt(a^2-u^2))
\int\:\frac{1}{u\sqrt{a^{2}-u^{2}}}du
(\partial)/(\partial z)(cos(xyz))
\frac{\partial\:}{\partial\:z}(\cos(xyz))
(dy)/(dt)=1.4y
\frac{dy}{dt}=1.4y
integral of 1/(-x^2-1)
\int\:\frac{1}{-x^{2}-1}dx
derivative of y=\sqrt[3]{t}(t^2+4)
derivative\:y=\sqrt[3]{t}(t^{2}+4)
y^'=((xy^3))/(25)
y^{\prime\:}=\frac{(xy^{3})}{25}
integral of-18t+4
\int\:-18t+4dt
1
..
345
346
347
348
349
..
1823