Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of (3t+3)^{2.2}
\int\:(3t+3)^{2.2}dt
derivative of y=6x-11
derivative\:y=6x-11
integral of (5/x+sec^2(x))
\int\:(\frac{5}{x}+\sec^{2}(x))dx
limit as x approaches 2 of 3.5+5.6
\lim\:_{x\to\:2}(3.5+5.6)
limit as x approaches 2-of (2-|x|)/(2+x)
\lim\:_{x\to\:2-}(\frac{2-\left|x\right|}{2+x})
derivative of (4x+3)^5
derivative\:(4x+3)^{5}
y^{''}-3y^'-4y=6e^{2t}
y^{\prime\:\prime\:}-3y^{\prime\:}-4y=6e^{2t}
limit as x approaches 0+of (3xe^{2x})/(sin(6x))
\lim\:_{x\to\:0+}(\frac{3xe^{2x}}{\sin(6x)})
limit as x approaches+0 of (1-2x)^{3/x}
\lim\:_{x\to\:+0}((1-2x)^{\frac{3}{x}})
derivative of bx^2(x-4)
\frac{d}{dx}(bx^{2}(x-4))
derivative of (x^2/(x^2+3))
\frac{d}{dx}(\frac{x^{2}}{x^{2}+3})
limit as x approaches 1 of 10x+1
\lim\:_{x\to\:1}(10x+1)
integral of x(x^2+2)^2
\int\:x(x^{2}+2)^{2}dx
inverse oflaplace 4(((1))/(s^2+16))
inverselaplace\:4(\frac{(1)}{s^{2}+16})
area y= 2/x ,y=7-x
area\:y=\frac{2}{x},y=7-x
integral of xsqrt(4-x^2)-x^2(sqrt(3))/3
\int\:x\sqrt{4-x^{2}}-x^{2}\frac{\sqrt{3}}{3}dx
(1+x)^2(dy)/(dx)=(1+y)^2
(1+x)^{2}\frac{dy}{dx}=(1+y)^{2}
derivative of xsqrt(9-x)
derivative\:x\sqrt{9-x}
integral of tan(-6x+3)
\int\:\tan(-6x+3)dx
integral of 8sin^2(xco)s^3x
\int\:8\sin^{2}(xco)s^{3}xdx
f(x)= x/(4x-3ln(x))
f(x)=\frac{x}{4x-3\ln(x)}
derivative of e^{(x/2 ^2})
\frac{d}{dx}(e^{(\frac{x}{2})^{2}})
slope of f(x)=x^2-5
slope\:f(x)=x^{2}-5
derivative of 3cos(x-4sin(x))
\frac{d}{dx}(3\cos(x)-4\sin(x))
limit as x approaches 9 of x^2
\lim\:_{x\to\:9}(x^{2})
integral of cos(t)
\int\:\cos(t)dt
inverse oflaplace (e^{-pis})/(s^2+9)
inverselaplace\:\frac{e^{-πs}}{s^{2}+9}
integral of 1/((x^2-1))
\int\:\frac{1}{(x^{2}-1)}dx
integral of (ln(14x))/(x^5)
\int\:\frac{\ln(14x)}{x^{5}}dx
integral of 1/(t^2-2t+1)
\int\:\frac{1}{t^{2}-2t+1}dt
1/(x^2+y^2)(xdy-ydx)=0
\frac{1}{x^{2}+y^{2}}(xdy-ydx)=0
laplacetransform cos(2(t-(5pi)/4))
laplacetransform\:\cos(2(t-\frac{5π}{4}))
limit as x approaches 2+of |x-2|
\lim\:_{x\to\:2+}(\left|x-2\right|)
derivative of (1+csc(x^4)/(1-cot(x^4)))
\frac{d}{dx}(\frac{1+\csc(x^{4})}{1-\cot(x^{4})})
(\partial)/(\partial x)((e^{xy})/(x+1))
\frac{\partial\:}{\partial\:x}(\frac{e^{xy}}{x+1})
tangent of y=4ln(x),\at x=4
tangent\:y=4\ln(x),\at\:x=4
integral from 0 to 1 of (x^{4/5})
\int\:_{0}^{1}(x^{\frac{4}{5}})dx
integral of ((1+6ln(x))^{11})/x
\int\:\frac{(1+6\ln(x))^{11}}{x}dx
integral of x^2+2xy+y^2
\int\:x^{2}+2xy+y^{2}dx
(dy)/(dx)= 1/(sqrt(1-x^2))-1/(sqrt(x))
\frac{dy}{dx}=\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{x}}
derivative of x^2+4x+6
derivative\:x^{2}+4x+6
integral of x^2ln(x^2)
\int\:x^{2}\ln(x^{2})dx
laplacetransform 2t^2-t+1
laplacetransform\:2t^{2}-t+1
integral of (5x+4)^2
\int\:(5x+4)^{2}dx
integral of x^3sqrt(9-x^2)
\int\:x^{3}\sqrt{9-x^{2}}dx
integral of (2x^2)/((x-2)^3)
\int\:\frac{2x^{2}}{(x-2)^{3}}dx
integral from-1 to 2 of 3x^2+2x+1
\int\:_{-1}^{2}3x^{2}+2x+1dx
derivative of cos(cos(cos(x)))
derivative\:\cos(\cos(\cos(x)))
tangent of x^4-32x^2+256
tangent\:x^{4}-32x^{2}+256
derivative of (x^3/(18))
\frac{d}{dx}(\frac{x^{3}}{18})
derivative of f(x)=4x(sin(x)+cos(x))
derivative\:f(x)=4x(\sin(x)+\cos(x))
integral of (4x+5)/(sqrt(4x+6))
\int\:\frac{4x+5}{\sqrt{4x+6}}dx
derivative of (e^{-x}/(x^2))
\frac{d}{dx}(\frac{e^{-x}}{x^{2}})
integral of 8t^3(1+t^4)^{10}
\int\:8t^{3}(1+t^{4})^{10}dt
integral of (-1)/(x(ln(x))^2)
\int\:\frac{-1}{x(\ln(x))^{2}}dx
tangent of x^2+y^2=17,(4,-1)
tangent\:x^{2}+y^{2}=17,(4,-1)
integral of \sqrt[3]{2-4x^2}(-8x)
\int\:\sqrt[3]{2-4x^{2}}(-8x)dx
derivative of f(x)=sqrt(x)*e^x
derivative\:f(x)=\sqrt{x}\cdot\:e^{x}
derivative of f(-1)=(5p+4)^{40}
derivative\:f(-1)=(5p+4)^{40}
integral of t/(1-t)
\int\:\frac{t}{1-t}dt
limit as x approaches-3 of-2x-3
\lim\:_{x\to\:-3}(-2x-3)
integral of \sqrt[17]{cot(x)}csc^2(x)
\int\:\sqrt[17]{\cot(x)}\csc^{2}(x)dx
limit as x approaches 0 of (ln(1+x^2))/x
\lim\:_{x\to\:0}(\frac{\ln(1+x^{2})}{x})
(d^2)/(dx^2)((x^2+4)/(x^2-4))
\frac{d^{2}}{dx^{2}}(\frac{x^{2}+4}{x^{2}-4})
derivative of 8x+5
\frac{d}{dx}(8x+5)
integral from 0 to 5.5 of 90x
\int\:_{0}^{5.5}90xdx
derivative of e^{3x+2}
\frac{d}{dx}(e^{3x+2})
integral of (5x^2-10x-8)/(x^3-4x)
\int\:\frac{5x^{2}-10x-8}{x^{3}-4x}dx
integral of 3/((t^2+1)^{3/2)}
\int\:\frac{3}{(t^{2}+1)^{\frac{3}{2}}}dt
(x^2+1)(dy)/(dx)+3x(y-1)=0,y(0)=4
(x^{2}+1)\frac{dy}{dx}+3x(y-1)=0,y(0)=4
(\partial)/(\partial x)(xcos(yln(x)))
\frac{\partial\:}{\partial\:x}(x\cos(y\ln(x)))
limit as x approaches 0.1 of 1/x
\lim\:_{x\to\:0.1}(\frac{1}{x})
integral of 1/((81-x^2)^{3/2)}
\int\:\frac{1}{(81-x^{2})^{\frac{3}{2}}}dx
integral of cos(x/2)*cos(nx)
\int\:\cos(\frac{x}{2})\cdot\:\cos(nx)dx
integral of t^2e^t
\int\:t^{2}e^{t}dt
sum from n=1 to infinity of (n-1)/n
\sum\:_{n=1}^{\infty\:}\frac{n-1}{n}
integral of 12x^2+6x-4
\int\:12x^{2}+6x-4dx
(\partial)/(\partial x)(ycos(xy)-ysin(xy))
\frac{\partial\:}{\partial\:x}(y\cos(xy)-y\sin(xy))
limit as h approaches 0 of ((sin(pi/6+h)-1/2))/h
\lim\:_{h\to\:0}(\frac{(\sin(\frac{π}{6}+h)-\frac{1}{2})}{h})
derivative of (t+4)^{2/3}(3t^2-2)^3
derivative\:(t+4)^{\frac{2}{3}}(3t^{2}-2)^{3}
limit as x approaches 3 of sqrt(x^2+7)
\lim\:_{x\to\:3}(\sqrt{x^{2}+7})
derivative of log_{2}(8^{x-5})
\frac{d}{dx}(\log_{2}(8^{x-5}))
slope of (-11,-4),(-10,5)
slope\:(-11,-4),(-10,5)
integral of (1/(1+x^2))
\int\:(\frac{1}{1+x^{2}})dx
limit as x approaches 0 of (1+1/x)^x
\lim\:_{x\to\:0}((1+\frac{1}{x})^{x})
(\partial)/(\partial y)(x^3ln(y^5))
\frac{\partial\:}{\partial\:y}(x^{3}\ln(y^{5}))
inverse oflaplace 1/((s+4)^3)
inverselaplace\:\frac{1}{(s+4)^{3}}
x^2(dy)/(dx)-2xy=6y^4
x^{2}\frac{dy}{dx}-2xy=6y^{4}
(dy}{dx}=\frac{-y)/x
\frac{dy}{dx}=\frac{-y}{x}
integral of 6/(sqrt(25-x^2))
\int\:\frac{6}{\sqrt{25-x^{2}}}dx
t^2y^{''}-2ty^'+2y=3t^2-t^3
t^{2}y^{\prime\:\prime\:}-2ty^{\prime\:}+2y=3t^{2}-t^{3}
f(t)=\sqrt[6]{t}-6e^t
f(t)=\sqrt[6]{t}-6e^{t}
integral from 2 to infinity of e^{-7p}
\int\:_{2}^{\infty\:}e^{-7p}dp
limit as x approaches-2 of 4/(x+2)
\lim\:_{x\to\:-2}(\frac{4}{x+2})
derivative of (6x/(sqrt(x^2+4)))
\frac{d}{dx}(\frac{6x}{\sqrt{x^{2}+4}})
integral of sqrt(99-2x-x^2)
\int\:\sqrt{99-2x-x^{2}}dx
(dy)/(dx)= 1/9 sqrt(y)cos^2(sqrt(y))
\frac{dy}{dx}=\frac{1}{9}\sqrt{y}\cos^{2}(\sqrt{y})
(dy)/(dx)=(2x+(sec(x))^2)/(2y)
\frac{dy}{dx}=\frac{2x+(\sec(x))^{2}}{2y}
tangent of 4sin(x),\at x= pi/2
tangent\:4\sin(x),\at\:x=\frac{π}{2}
inverse oflaplace (-1)/(s+2)
inverselaplace\:\frac{-1}{s+2}
1
..
1002
1003
1004
1005
1006
..
1823