f(x)=sqrt(x)-sqrt(5)
|
f(x)=\sqrt{x}-\sqrt{5}
|
f(x)=(4x)/(x^2+9),-4<= x<= 4
|
f(x)=\frac{4x}{x^{2}+9},-4\le\:x\le\:4
|
y=((9x^2)(2/6 x))
|
y=((9x^{2})(\frac{2}{6}x))
|
f(x)=2+log_{2}(x-3)
|
f(x)=2+\log_{2}(x-3)
|
asymptotes of f(x)=(x^2)/(x^2-4)
|
asymptotes\:f(x)=\frac{x^{2}}{x^{2}-4}
|
f(x)=2x^3cos(2x^4)
|
f(x)=2x^{3}\cos(2x^{4})
|
f(x)=x^4-x-1
|
f(x)=x^{4}-x-1
|
f(x)= 5/(x^2+4)
|
f(x)=\frac{5}{x^{2}+4}
|
y=(-5)/(2sin(3/4 x))
|
y=\frac{-5}{2\sin(\frac{3}{4}x)}
|
y=x^2+8x-1
|
y=x^{2}+8x-1
|
y=-2cos(3/4 x)
|
y=-2\cos(\frac{3}{4}x)
|
y=-sqrt(3)-3x-x^2
|
y=-\sqrt{3}-3x-x^{2}
|
f(x)=7+ln(3x+1)
|
f(x)=7+\ln(3x+1)
|
f(x)=e^xsin(x)+cos(x)
|
f(x)=e^{x}\sin(x)+\cos(x)
|
h(x)=-5x^2+10x+20
|
h(x)=-5x^{2}+10x+20
|
asymptotes of f(x)=(5x)/(x^2-16)
|
asymptotes\:f(x)=\frac{5x}{x^{2}-16}
|
f(x)=-1/5 x^2
|
f(x)=-\frac{1}{5}x^{2}
|
f(x)=6x^2-4x+6
|
f(x)=6x^{2}-4x+6
|
y= 3/((x+0.81)^3)
|
y=\frac{3}{(x+0.81)^{3}}
|
f(x)=-1/2 x^2-4x+10
|
f(x)=-\frac{1}{2}x^{2}-4x+10
|
f(x)=3-1/2 x,2<= x<= 14
|
f(x)=3-\frac{1}{2}x,2\le\:x\le\:14
|
f(x)=5x^2+4x+2
|
f(x)=5x^{2}+4x+2
|
f(x)=5x^2+4x-2
|
f(x)=5x^{2}+4x-2
|
f(x)=e^{(x+2)/x}
|
f(x)=e^{\frac{x+2}{x}}
|
f(x)=-(x+3)^2-5,-7<= x<=-4
|
f(x)=-(x+3)^{2}-5,-7\le\:x\le\:-4
|
f(x)=x^4+3x^3-4x^2
|
f(x)=x^{4}+3x^{3}-4x^{2}
|
domain of (2x+1)/(x^2-1)
|
domain\:\frac{2x+1}{x^{2}-1}
|
f(x)=10x+2
|
f(x)=10x+2
|
y=-3cos(1/2 (x-pi/3))+2
|
y=-3\cos(\frac{1}{2}(x-\frac{π}{3}))+2
|
y=log_{10}(7-x)
|
y=\log_{10}(7-x)
|
f(x)=5000x-12x^2
|
f(x)=5000x-12x^{2}
|
f(x)=64x^8
|
f(x)=64x^{8}
|
f(x)=x^4-3x^3-6x^2-28x-24
|
f(x)=x^{4}-3x^{3}-6x^{2}-28x-24
|
f(x)=6-x^2,-2<= x<= 2
|
f(x)=6-x^{2},-2\le\:x\le\:2
|
f(x)=x^2-2x-14
|
f(x)=x^{2}-2x-14
|
f(x)=sin^2(x)+cos(x),0<x<2pi
|
f(x)=\sin^{2}(x)+\cos(x),0<x<2π
|
f(x)=(x^2-4x+4)/(x^3-5x^2)
|
f(x)=\frac{x^{2}-4x+4}{x^{3}-5x^{2}}
|
inverse of f(x)=sqrt(2x-6)
|
inverse\:f(x)=\sqrt{2x-6}
|
f(x)=(x^2-e^{2x})(x-1)
|
f(x)=(x^{2}-e^{2x})(x-1)
|
y=5x^5
|
y=5x^{5}
|
f(x)=(27x^2)/((1-x)^3)
|
f(x)=\frac{27x^{2}}{(1-x)^{3}}
|
f(x)=2|x|-x^2
|
f(x)=2\left|x\right|-x^{2}
|
f(x)=log_{3}(x)+5
|
f(x)=\log_{3}(x)+5
|
f(N)=log_{16}(N)
|
f(N)=\log_{16}(N)
|
f(x)= 1/(4x^2-4x-3)
|
f(x)=\frac{1}{4x^{2}-4x-3}
|
f(x)=x^3-x^2-2x-1
|
f(x)=x^{3}-x^{2}-2x-1
|
f(x)=sqrt(x)-11
|
f(x)=\sqrt{x}-11
|
f(t)=sqrt(t)+3t
|
f(t)=\sqrt{t}+3t
|
inverse of f(x)=log_{3}(x)
|
inverse\:f(x)=\log_{3}(x)
|
y= 4/3 x-5/3
|
y=\frac{4}{3}x-\frac{5}{3}
|
f(x)=-x+5/3
|
f(x)=-x+\frac{5}{3}
|
y=sqrt(sin(3x))
|
y=\sqrt{\sin(3x)}
|
f(n)=2^{n^2}
|
f(n)=2^{n^{2}}
|
f(x)=-(x+2)^2+1
|
f(x)=-(x+2)^{2}+1
|
f(t)=t+4
|
f(t)=t+4
|
36y^2=(x^2-4)^3,4<= x<= 9
|
36y^{2}=(x^{2}-4)^{3},4\le\:x\le\:9
|
f(j)=j^{33}
|
f(j)=j^{33}
|
y=x^4+2x^2+1
|
y=x^{4}+2x^{2}+1
|
f(x)= 1/3 (\sqrt[3]{24})^{2x}
|
f(x)=\frac{1}{3}(\sqrt[3]{24})^{2x}
|
intercepts of f(x)=(x+2)/(x-4)
|
intercepts\:f(x)=\frac{x+2}{x-4}
|
log_{3}(x-5)-3
|
\log_{3}(x-5)-3
|
f(x)=-3xlog_{10}(x+8)
|
f(x)=-3x\log_{10}(x+8)
|
y=3(2^{4x-5})
|
y=3(2^{4x-5})
|
y=(cos(x))/(2sin^2(x))
|
y=\frac{\cos(x)}{2\sin^{2}(x)}
|
f(x)=(x^2-100)/(x^2-3x-4)
|
f(x)=\frac{x^{2}-100}{x^{2}-3x-4}
|
5,t>= 0
|
5,t\ge\:0
|
y=1-3/5 x
|
y=1-\frac{3}{5}x
|
y= 1/8 e^x
|
y=\frac{1}{8}e^{x}
|
f(x)=2(x-6)^2
|
f(x)=2(x-6)^{2}
|
f(x)=3x^2e^x+e^xx^3
|
f(x)=3x^{2}e^{x}+e^{x}x^{3}
|
domain of f(x)= 1/(5+e^{3x)}
|
domain\:f(x)=\frac{1}{5+e^{3x}}
|
y=-2(x-3)(x+7)
|
y=-2(x-3)(x+7)
|
f(x)=(arccot(x))/x-ln(x/(sqrt(1+x^2)))
|
f(x)=\frac{\arccot(x)}{x}-\ln(\frac{x}{\sqrt{1+x^{2}}})
|
f(n)=4^{n+1}-2^{2n+1}
|
f(n)=4^{n+1}-2^{2n+1}
|
y=-1/2 x^2-2
|
y=-\frac{1}{2}x^{2}-2
|
f(x)=x^2(x+4)^3(x-4)
|
f(x)=x^{2}(x+4)^{3}(x-4)
|
f(x)=(2x)/(e^x)
|
f(x)=\frac{2x}{e^{x}}
|
y=sec(x/6+pi/6)
|
y=\sec(\frac{x}{6}+\frac{π}{6})
|
f(x)=(x+7)/(x^2-9)
|
f(x)=\frac{x+7}{x^{2}-9}
|
y=(x^2-1)/(x^2+4)
|
y=\frac{x^{2}-1}{x^{2}+4}
|
y=sin(ln(1+x))
|
y=\sin(\ln(1+x))
|
range of f(x)=(e^{-x})/(x^2+1)
|
range\:f(x)=\frac{e^{-x}}{x^{2}+1}
|
y= 1/(7t^3)-(t^{-4})/5+2ln(3)
|
y=\frac{1}{7t^{3}}-\frac{t^{-4}}{5}+2\ln(3)
|
f(x)=3x^2-5x^{(-3)}+6x^5
|
f(x)=3x^{2}-5x^{(-3)}+6x^{5}
|
f(x)=6x^2-5x-7
|
f(x)=6x^{2}-5x-7
|
y=sec^2(t)-tan^2(t)
|
y=\sec^{2}(t)-\tan^{2}(t)
|
f(x)=x^5-3x^2+29
|
f(x)=x^{5}-3x^{2}+29
|
f(x)=x^3+7x^2-5x-35
|
f(x)=x^{3}+7x^{2}-5x-35
|
f(x)= 6/(x-7)
|
f(x)=\frac{6}{x-7}
|
f(x)=5ln(2x-7)
|
f(x)=5\ln(2x-7)
|
P(x)=2x^3+7x^2+2x-3
|
P(x)=2x^{3}+7x^{2}+2x-3
|
g(x)=(4x^2)/(2x^2+1)
|
g(x)=\frac{4x^{2}}{2x^{2}+1}
|
range of x^2+4x+7
|
range\:x^{2}+4x+7
|
inverse of 4x^4-37x^2+9
|
inverse\:4x^{4}-37x^{2}+9
|
f(n)= 1/(3^n)
|
f(n)=\frac{1}{3^{n}}
|
y=4x-3x^3
|
y=4x-3x^{3}
|
f(x)=-log_{2}(x+3)
|
f(x)=-\log_{2}(x+3)
|
f(x)= 1/(x^2-6x+8)
|
f(x)=\frac{1}{x^{2}-6x+8}
|
p(z)=z^2-5z+6
|
p(z)=z^{2}-5z+6
|
y= 1/((x+1))
|
y=\frac{1}{(x+1)}
|