y=-2x^2-3x
|
y=-2x^{2}-3x
|
f(x)= 1/((x^4+1)^3)
|
f(x)=\frac{1}{(x^{4}+1)^{3}}
|
f(x)=-2xsin(x^2)
|
f(x)=-2x\sin(x^{2})
|
f(x)= 1/(sqrt(36-t))
|
f(x)=\frac{1}{\sqrt{36-t}}
|
g(x)=(x+4)/(3x)
|
g(x)=\frac{x+4}{3x}
|
y=(3x+1)/(4x-7)
|
y=\frac{3x+1}{4x-7}
|
f(x)=9|x+1|+2
|
f(x)=9\left|x+1\right|+2
|
y=4log_{2}(x+6)-8
|
y=4\log_{2}(x+6)-8
|
y=x^2sqrt(x)
|
y=x^{2}\sqrt{x}
|
f(x)=sin^2(cos^2(x))
|
f(x)=\sin^{2}(\cos^{2}(x))
|
f(x)=\sqrt[3]{x^7}-2\sqrt[3]{x^4}
|
f(x)=\sqrt[3]{x^{7}}-2\sqrt[3]{x^{4}}
|
f(x)=4e^{-x}
|
f(x)=4e^{-x}
|
y=(x-2)(x+6)
|
y=(x-2)(x+6)
|
f(t)=3t-6
|
f(t)=3t-6
|
y=2x^3+5
|
y=2x^{3}+5
|
g(x)=log_{5}(-x)
|
g(x)=\log_{5}(-x)
|
extreme points of f(x)=x^4e^x-3
|
extreme\:points\:f(x)=x^{4}e^{x}-3
|
k(x)=2
|
k(x)=2
|
f(s)=s^2-2
|
f(s)=s^{2}-2
|
y=(cos(x))/(ln(x))
|
y=\frac{\cos(x)}{\ln(x)}
|
f(x)=3+1/x
|
f(x)=3+\frac{1}{x}
|
f(x)=-2x^3-1
|
f(x)=-2x^{3}-1
|
f(x)=x(x+3)(x-4)
|
f(x)=x(x+3)(x-4)
|
f(x)=-(x+3)(x-1)
|
f(x)=-(x+3)(x-1)
|
y=8x-8
|
y=8x-8
|
f(x)=0.0026x^2-0.0873x+0.9177
|
f(x)=0.0026x^{2}-0.0873x+0.9177
|
f(x)=arcsin((x-2)/3)
|
f(x)=\arcsin(\frac{x-2}{3})
|
critical points of f(x)=x+4/x
|
critical\:points\:f(x)=x+\frac{4}{x}
|
y=(2x)/3+1
|
y=\frac{2x}{3}+1
|
f(x)=(4x-4)/(x^2)
|
f(x)=\frac{4x-4}{x^{2}}
|
f(x)=x*e^{1-2x^2}
|
f(x)=x\cdot\:e^{1-2x^{2}}
|
y=ln(12x)
|
y=\ln(12x)
|
g(x)=x^2+7
|
g(x)=x^{2}+7
|
y=2ln(sec(x))
|
y=2\ln(\sec(x))
|
f(x)=6t^2+500t+8000
|
f(x)=6t^{2}+500t+8000
|
y=15x+220
|
y=15x+220
|
f(x)=4e^{7x}
|
f(x)=4e^{7x}
|
f(x)=1-(x-2)^{2/3}
|
f(x)=1-(x-2)^{\frac{2}{3}}
|
y=3x+3
|
y=3x+3
|
f(y)=e^y-1
|
f(y)=e^{y}-1
|
f(x)=2x^2+8x-12
|
f(x)=2x^{2}+8x-12
|
f(x)=(sqrt(2x^2+1))/x
|
f(x)=\frac{\sqrt{2x^{2}+1}}{x}
|
R(x)=(x+1)/(x(x+4))
|
R(x)=\frac{x+1}{x(x+4)}
|
f(x)=1+1/x-1/(x^2)
|
f(x)=1+\frac{1}{x}-\frac{1}{x^{2}}
|
f(x)=-2(x-3)^2(x^2-25)
|
f(x)=-2(x-3)^{2}(x^{2}-25)
|
f(x)=-x^3+3x-2
|
f(x)=-x^{3}+3x-2
|
y=x^2+7x-5
|
y=x^{2}+7x-5
|
y=(10)/(sqrt(x^2-4x+1))
|
y=\frac{10}{\sqrt{x^{2}-4x+1}}
|
y= 1/2 (x+2)^2-4
|
y=\frac{1}{2}(x+2)^{2}-4
|
domain of f(x)=sqrt(x^3-4x^2+3x)
|
domain\:f(x)=\sqrt{x^{3}-4x^{2}+3x}
|
y= 1/2 (x+2)^2+2
|
y=\frac{1}{2}(x+2)^{2}+2
|
f(s)=(s^3+3s^2-s+1)/(4s^4-2s^3+s^2-s+2)
|
f(s)=\frac{s^{3}+3s^{2}-s+1}{4s^{4}-2s^{3}+s^{2}-s+2}
|
f(x_{-2})=x_{-2}
|
f(x_{-2})=x_{-2}
|
f(x)=e^xcos(x)dx
|
f(x)=e^{x}\cos(x)dx
|
f(t)=sin(t)tan(t)
|
f(t)=\sin(t)\tan(t)
|
y= 2/x+1
|
y=\frac{2}{x}+1
|
f(x)=(x^3)
|
f(x)=(x^{3})
|
f(x)=-2760x^2+1159.11x+400
|
f(x)=-2760x^{2}+1159.11x+400
|
y=2cos(x)+sin(2x)
|
y=2\cos(x)+\sin(2x)
|
f(x)=sin(2)x
|
f(x)=\sin(2)x
|
inverse of f(x)=(ln(x))^5
|
inverse\:f(x)=(\ln(x))^{5}
|
f(x)=6-3x,1<x<3
|
f(x)=6-3x,1<x<3
|
f(x)=-ln(2-x)
|
f(x)=-\ln(2-x)
|
y=sqrt(5-x),3<= x<= 5
|
y=\sqrt{5-x},3\le\:x\le\:5
|
f(x)={x:x<0,x^2:x>= 0}
|
f(x)=\left\{x:x<0,x^{2}:x\ge\:0\right\}
|
f(x)=6e^{-5x}
|
f(x)=6e^{-5x}
|
f(θ)= 1/(2-cos(θ))
|
f(θ)=\frac{1}{2-\cos(θ)}
|
f(x)=x^2+5x-15
|
f(x)=x^{2}+5x-15
|
f(t)=e^{2t}cosh(t)
|
f(t)=e^{2t}\cosh(t)
|
f(x)=-3x^2+9
|
f(x)=-3x^{2}+9
|
g(x)=(x+3)/(x^2-9)
|
g(x)=\frac{x+3}{x^{2}-9}
|
distance (-1,12)(1,0)
|
distance\:(-1,12)(1,0)
|
y=ln((x^2+1)/(x+1))
|
y=\ln(\frac{x^{2}+1}{x+1})
|
f(x)=(x^3)/6-2x^2
|
f(x)=\frac{x^{3}}{6}-2x^{2}
|
f(0)=-2x^2+x-1
|
f(0)=-2x^{2}+x-1
|
f(x)=3x^2+12x-8
|
f(x)=3x^{2}+12x-8
|
y=121.6x+169.976
|
y=121.6x+169.976
|
g(x)=x^2-2x-8
|
g(x)=x^{2}-2x-8
|
f(x)=xln(x)-2x
|
f(x)=x\ln(x)-2x
|
f(x)=11^{x+3}-7
|
f(x)=11^{x+3}-7
|
f(x)= 5/(x^2-36)
|
f(x)=\frac{5}{x^{2}-36}
|
u(x)= 1/(4-x)
|
u(x)=\frac{1}{4-x}
|
shift 3cos(5x-9)
|
shift\:3\cos(5x-9)
|
intercepts of x^2+5
|
intercepts\:x^{2}+5
|
f(x)=-2(x+3)(x-2)^3
|
f(x)=-2(x+3)(x-2)^{3}
|
f(x)=(-1)/(sin(x))
|
f(x)=\frac{-1}{\sin(x)}
|
y=xsqrt(x+2)
|
y=x\sqrt{x+2}
|
y=|4-x|
|
y=\left|4-x\right|
|
y=-16t^2+11t
|
y=-16t^{2}+11t
|
y= 1/((x^2-4))
|
y=\frac{1}{(x^{2}-4)}
|
f(x)=sqrt(9x^2-2x-3)+3x
|
f(x)=\sqrt{9x^{2}-2x-3}+3x
|
y=-x^3+27
|
y=-x^{3}+27
|
f(θ)= 4/(2+sin(θ))
|
f(θ)=\frac{4}{2+\sin(θ)}
|
f(x)=x+1,-2<= x<= 5
|
f(x)=x+1,-2\le\:x\le\:5
|
periodicity of y=tan(2x)
|
periodicity\:y=\tan(2x)
|
f(x)=log_{10}(1/2)x
|
f(x)=\log_{10}(\frac{1}{2})x
|
y=x^4-8x^2+4
|
y=x^{4}-8x^{2}+4
|
f(x)=-3^{x+2}
|
f(x)=-3^{x+2}
|
f(x)=x^6-3x^2
|
f(x)=x^{6}-3x^{2}
|
f(x)=(30)/x
|
f(x)=\frac{30}{x}
|