f(t)=sqrt(-sin^2(t)+cos^2(t))
|
f(t)=\sqrt{-\sin^{2}(t)+\cos^{2}(t)}
|
f(x)=x^{2/3}-x
|
f(x)=x^{\frac{2}{3}}-x
|
critical points of f(x)=-6sin(-x+(pi)/2)
|
critical\:points\:f(x)=-6\sin(-x+\frac{\pi}{2})
|
domain of f(x)=-x^2-2x-5
|
domain\:f(x)=-x^{2}-2x-5
|
y=e^x-x
|
y=e^{x}-x
|
h(t)=-4.9t^2+10t+11
|
h(t)=-4.9t^{2}+10t+11
|
f(x)=(2-x)/(3x)
|
f(x)=\frac{2-x}{3x}
|
y= 1/(2^x)
|
y=\frac{1}{2^{x}}
|
g(x)=(x^2+1)(x+1)^2
|
g(x)=(x^{2}+1)(x+1)^{2}
|
y=(12)/(x+4)
|
y=\frac{12}{x+4}
|
f(x)=(3x)/(4-x)
|
f(x)=\frac{3x}{4-x}
|
f(x)=-3cos(x-pi/3),0<= x<= 2pi
|
f(x)=-3\cos(x-\frac{π}{3}),0\le\:x\le\:2π
|
f(t)= 4/t
|
f(t)=\frac{4}{t}
|
f(x)=(2x^2-x-3)/(3x^2+8x+5)
|
f(x)=\frac{2x^{2}-x-3}{3x^{2}+8x+5}
|
domain of f(x)=log_{4}(x)
|
domain\:f(x)=\log_{4}(x)
|
f(x)=sqrt(x-[x])
|
f(x)=\sqrt{x-[x]}
|
y=(x^2-5x+4)/(x-4)
|
y=\frac{x^{2}-5x+4}{x-4}
|
f(x)=-log_{10}(x-3)
|
f(x)=-\log_{10}(x-3)
|
y=(2-3x^2)^4(x^7+3)^3
|
y=(2-3x^{2})^{4}(x^{7}+3)^{3}
|
f(t)=-3e^{2t}
|
f(t)=-3e^{2t}
|
f(x)= x/(sqrt(x-1))
|
f(x)=\frac{x}{\sqrt{x-1}}
|
y=\sqrt[3]{x}+4/x+sqrt(x)
|
y=\sqrt[3]{x}+\frac{4}{x}+\sqrt{x}
|
y=2|x+3|-7
|
y=2\left|x+3\right|-7
|
f(x)=(5x)/(x^2-9)
|
f(x)=\frac{5x}{x^{2}-9}
|
f(x)=e^{sqrt(x-2)}
|
f(x)=e^{\sqrt{x-2}}
|
perpendicular (3,-9)y=-x/5-7
|
perpendicular\:(3,-9)y=-\frac{x}{5}-7
|
g(x)=\sqrt[3]{1+x}a(x,t)ta(x,t)=0
|
g(x)=\sqrt[3]{1+x}a(x,t)ta(x,t)=0
|
f(x)= 1/2 x^2-2x+6ln(x+5)
|
f(x)=\frac{1}{2}x^{2}-2x+6\ln(x+5)
|
y=ln(ln(x^5))
|
y=\ln(\ln(x^{5}))
|
f(x)=sqrt(5-4x-x^2)
|
f(x)=\sqrt{5-4x-x^{2}}
|
f(x)=\sqrt[3]{x^2}+\sqrt[3]{x}
|
f(x)=\sqrt[3]{x^{2}}+\sqrt[3]{x}
|
f(y)= y/6
|
f(y)=\frac{y}{6}
|
f(θ)=8cos(2θ)cos(4θ)
|
f(θ)=8\cos(2θ)\cos(4θ)
|
((s-4))/((s+1)*(s+2)),s>-1
|
\frac{(s-4)}{(s+1)\cdot\:(s+2)},s>-1
|
f(x)=e^x+2x-4
|
f(x)=e^{x}+2x-4
|
f(x)=\sqrt[3]{2x+5}
|
f(x)=\sqrt[3]{2x+5}
|
domain of f(x)= x/(x^2+x-6)
|
domain\:f(x)=\frac{x}{x^{2}+x-6}
|
f(x)=4-2x-x^2
|
f(x)=4-2x-x^{2}
|
f(x)=sqrt(x+3)-sqrt(3)
|
f(x)=\sqrt{x+3}-\sqrt{3}
|
g(x)=3(4-9x)^4
|
g(x)=3(4-9x)^{4}
|
f(x)=|(2x)/(x-4)|
|
f(x)=\left|\frac{2x}{x-4}\right|
|
f(x)=x^2-10x+36
|
f(x)=x^{2}-10x+36
|
f(x)=(x+4)(x-2)^2
|
f(x)=(x+4)(x-2)^{2}
|
f(x)= 4/(2x-1)
|
f(x)=\frac{4}{2x-1}
|
y=2cos(x-(2pi)/3)
|
y=2\cos(x-\frac{2π}{3})
|
f(x)=(log_{88.5}(x))/(log_{12)(x)}
|
f(x)=\frac{\log_{88.5}(x)}{\log_{12}(x)}
|
f(m)=10^{11.8+1.5m}
|
f(m)=10^{11.8+1.5m}
|
slope intercept of 8x-6y=54
|
slope\:intercept\:8x-6y=54
|
g(x)=ln(x+1)
|
g(x)=\ln(x+1)
|
F(x)=2x+2
|
F(x)=2x+2
|
f(x)=cos(x)+sin^2(x)
|
f(x)=\cos(x)+\sin^{2}(x)
|
f(x)= 1/(sqrt(1-2x))
|
f(x)=\frac{1}{\sqrt{1-2x}}
|
y=(x^3)/9
|
y=\frac{x^{3}}{9}
|
y=arctanh(x)
|
y=\arctanh(x)
|
f(x)=(ln(x+2))/(x-1)
|
f(x)=\frac{\ln(x+2)}{x-1}
|
f(x)=(x+1)/(x^3-9x)
|
f(x)=\frac{x+1}{x^{3}-9x}
|
f(h)=h^8
|
f(h)=h^{8}
|
f(x)=x(x-1)^{1/2}
|
f(x)=x(x-1)^{\frac{1}{2}}
|
critical points of f(x)=(8x^2)/(x-2)
|
critical\:points\:f(x)=\frac{8x^{2}}{x-2}
|
p(x)=x^3-11x^2+kx+32
|
p(x)=x^{3}-11x^{2}+kx+32
|
y=2tan(x+(3pi)/4)
|
y=2\tan(x+\frac{3π}{4})
|
y=\sqrt[3]{x-2}-2
|
y=\sqrt[3]{x-2}-2
|
f(b)=b+7
|
f(b)=b+7
|
f(b)=b+1
|
f(b)=b+1
|
y=3x^5-10x^3+45x
|
y=3x^{5}-10x^{3}+45x
|
g(x)=x^2(sin(x))
|
g(x)=x^{2}(\sin(x))
|
f(x)=(3/4)^{-1}
|
f(x)=(\frac{3}{4})^{-1}
|
f(x)=((x-3))/(x^2+2)
|
f(x)=\frac{(x-3)}{x^{2}+2}
|
f(x)=log_{3}(2x-5)
|
f(x)=\log_{3}(2x-5)
|
intercepts of f(x)=4x-3y=8
|
intercepts\:f(x)=4x-3y=8
|
y= 2/3 x+5/3
|
y=\frac{2}{3}x+\frac{5}{3}
|
y=x^3+2x^2+2x+1
|
y=x^{3}+2x^{2}+2x+1
|
y= 3/(x^2)+(sqrt(x))/x-2/(\sqrt[3]{x)}
|
y=\frac{3}{x^{2}}+\frac{\sqrt{x}}{x}-\frac{2}{\sqrt[3]{x}}
|
y=-4sin(2pix)
|
y=-4\sin(2πx)
|
f(x)=8x^2+13x+7
|
f(x)=8x^{2}+13x+7
|
f(x)=sqrt(4x-11)-1
|
f(x)=\sqrt{4x-11}-1
|
y=ln(x/2)
|
y=\ln(\frac{x}{2})
|
f(x)=(10-10x^2)/(x^2)
|
f(x)=\frac{10-10x^{2}}{x^{2}}
|
f(x)=sin(45)
|
f(x)=\sin(45^{\circ\:})
|
f(x)=(3x+2)/2
|
f(x)=\frac{3x+2}{2}
|
inflection points of ((e^x-e^{-x})/5)
|
inflection\:points\:(\frac{e^{x}-e^{-x}}{5})
|
f(x)=2+x^{2/3}
|
f(x)=2+x^{\frac{2}{3}}
|
f(x)=-4x^4+3x^2-15x+5
|
f(x)=-4x^{4}+3x^{2}-15x+5
|
p(x)=-2x^2+40x-72
|
p(x)=-2x^{2}+40x-72
|
f(x)= x/(2x-5)
|
f(x)=\frac{x}{2x-5}
|
f(x)=2x^2+3x-15
|
f(x)=2x^{2}+3x-15
|
y=x^2+3x-14
|
y=x^{2}+3x-14
|
f(x)=3sqrt(5-x)
|
f(x)=3\sqrt{5-x}
|
f(x)=2x^3-3x^2+4
|
f(x)=2x^{3}-3x^{2}+4
|
f(x)=ln(arccsch(x))
|
f(x)=\ln(\arccsch(x))
|
Y(x)=3x
|
Y(x)=3x
|
inverse of f(x)=((x+1))/(2x+1)
|
inverse\:f(x)=\frac{(x+1)}{2x+1}
|
f(x)=tanh(3x)
|
f(x)=\tanh(3x)
|
f(x)=2|x+3|-2
|
f(x)=2\left|x+3\right|-2
|
f(x)=(x^3)/3-x^2-3x
|
f(x)=\frac{x^{3}}{3}-x^{2}-3x
|
f(x)=2+|x-3|
|
f(x)=2+\left|x-3\right|
|
f(x)=-3x-7
|
f(x)=-3x-7
|
y=log_{a}(1/x)
|
y=\log_{a}(\frac{1}{x})
|
f(x)=7x^2+4x-3
|
f(x)=7x^{2}+4x-3
|
f(x)=sqrt(x^2+2x+1)
|
f(x)=\sqrt{x^{2}+2x+1}
|