Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
perpendicular-x+5y=6,(5,-3)
perpendicular\:-x+5y=6,(5,-3)
range of sqrt(x^2-9)
range\:\sqrt{x^{2}-9}
line m= 5/4 ,(-8,-3)
line\:m=\frac{5}{4},(-8,-3)
inflection f(x)=x^4-32x^2+9
inflection\:f(x)=x^{4}-32x^{2}+9
slope ofintercept 3x-2y=-6
slopeintercept\:3x-2y=-6
domain of f(x)= y/(y-6)+(15)/(y+6)
domain\:f(x)=\frac{y}{y-6}+\frac{15}{y+6}
extreme f(x)=(-15)/(x^2+5)
extreme\:f(x)=\frac{-15}{x^{2}+5}
parallel y=x+4,(-1,2)
parallel\:y=x+4,(-1,2)
domain of f(x)=(sqrt(x+5))/(x-3)
domain\:f(x)=\frac{\sqrt{x+5}}{x-3}
midpoint (2,4),(1,-3)
midpoint\:(2,4),(1,-3)
domain of f(x)= 3/(3/x)
domain\:f(x)=\frac{3}{\frac{3}{x}}
slope of y-3=3(x+1)
slope\:y-3=3(x+1)
inverse of f(x)=(x+1)/3
inverse\:f(x)=\frac{x+1}{3}
x+5=0
x+5=0
domain of f(x)=sqrt(3x+7)
domain\:f(x)=\sqrt{3x+7}
domain of f(x)= 1/(x-6)
domain\:f(x)=\frac{1}{x-6}
perpendicular 5x-y=12
perpendicular\:5x-y=12
inverse of f(x)=-4/3 x-8
inverse\:f(x)=-\frac{4}{3}x-8
asymptotes of f(x)=(-6x)/(x^2+3)
asymptotes\:f(x)=\frac{-6x}{x^{2}+3}
slope of x=4y
slope\:x=4y
midpoint (-4,8),(4,-2)
midpoint\:(-4,8),(4,-2)
perpendicular 2x+6y=1
perpendicular\:2x+6y=1
inverse of f(x)=160t-16t^2
inverse\:f(x)=160t-16t^{2}
slope of 3x-4y=-8
slope\:3x-4y=-8
domain of sqrt(4-x^2)
domain\:\sqrt{4-x^{2}}
domain of-1/6 x^2+200x
domain\:-\frac{1}{6}x^{2}+200x
symmetry y=2(x-4)(x+2)
symmetry\:y=2(x-4)(x+2)
asymptotes of 1/(x^2+1)
asymptotes\:\frac{1}{x^{2}+1}
domain of f(x)=9+x/(x^2)
domain\:f(x)=9+\frac{x}{x^{2}}
critical f(x)=x^3+3x^2
critical\:f(x)=x^{3}+3x^{2}
intercepts of 9x^2-16
intercepts\:9x^{2}-16
domain of f(x)=(5t-1)/(sqrt(t^3-t^2-8t))
domain\:f(x)=\frac{5t-1}{\sqrt{t^{3}-t^{2}-8t}}
critical f(x)=8x^3-12x^2+4
critical\:f(x)=8x^{3}-12x^{2}+4
critical (5-x)^4
critical\:(5-x)^{4}
line (1,5),(2,7)
line\:(1,5),(2,7)
range of (x-2)/(3x+5)
range\:\frac{x-2}{3x+5}
critical 4/x+x^4
critical\:\frac{4}{x}+x^{4}
periodicity of-5sin(15pit)
periodicity\:-5\sin(15πt)
inflection (2-x^2)/(1+x^4)
inflection\:\frac{2-x^{2}}{1+x^{4}}
asymptotes of f(x)=(5x-10)/(x^2+x-12)
asymptotes\:f(x)=\frac{5x-10}{x^{2}+x-12}
domain of f(x)=(7/x)+(1/(x^2))
domain\:f(x)=(\frac{7}{x})+(\frac{1}{x^{2}})
domain of f(x)= 5/(sqrt(-x^2-3x+4))
domain\:f(x)=\frac{5}{\sqrt{-x^{2}-3x+4}}
midpoint (-6,6),(2,-4)
midpoint\:(-6,6),(2,-4)
domain of y=sqrt(x)+7
domain\:y=\sqrt{x}+7
periodicity of 5sin(2x)
periodicity\:5\sin(2x)
slope ofintercept y=2x+6
slopeintercept\:y=2x+6
range of 4/x+3
range\:\frac{4}{x}+3
parity f(x)=(x^3)/4
parity\:f(x)=\frac{x^{3}}{4}
domain of f(x)=arcsin(x^2+2x-1)
domain\:f(x)=\arcsin(x^{2}+2x-1)
domain of f(x)=x+sqrt(1-x^2)
domain\:f(x)=x+\sqrt{1-x^{2}}
domain of f(x)=sqrt(7-2x)
domain\:f(x)=\sqrt{7-2x}
inverse of f(x)=(6-x)^{1/8}
inverse\:f(x)=(6-x)^{\frac{1}{8}}
intercepts of f(x)=-(x-3)^2+4
intercepts\:f(x)=-(x-3)^{2}+4
asymptotes of (sqrt(2x^2+1))/(3x-5)
asymptotes\:\frac{\sqrt{2x^{2}+1}}{3x-5}
distance (0,0),(2,2)
distance\:(0,0),(2,2)
inflection f(x)=-x^3+6x^2-18
inflection\:f(x)=-x^{3}+6x^{2}-18
range of f(x)=sqrt(x+4)-1
range\:f(x)=\sqrt{x+4}-1
inverse of f(x)=5+8/3 x
inverse\:f(x)=5+\frac{8}{3}x
periodicity of f(x)=2tan(4x-pi)+1
periodicity\:f(x)=2\tan(4x-π)+1
monotone f(x)= 5/3 x^3-5/2 x^2
monotone\:f(x)=\frac{5}{3}x^{3}-\frac{5}{2}x^{2}
inverse of ln(0.567)
inverse\:\ln(0.567)
domain of f(x)=3x^2+2x-7
domain\:f(x)=3x^{2}+2x-7
extreme-(100)/(x^2)
extreme\:-\frac{100}{x^{2}}
slope ofintercept y+4x=3
slopeintercept\:y+4x=3
simplify (-3)(7)
simplify\:(-3)(7)
domain of f(x)= 1/(sqrt(8-x))
domain\:f(x)=\frac{1}{\sqrt{8-x}}
domain of f(x)= x/((x+2))
domain\:f(x)=\frac{x}{(x+2)}
line (2,0),(3/2 , 1/(sqrt(2)))
line\:(2,0),(\frac{3}{2},\frac{1}{\sqrt{2}})
inverse of f(x)=(3x+5)^3-6
inverse\:f(x)=(3x+5)^{3}-6
intercepts of f(x)=x^2-1/(x-2)
intercepts\:f(x)=x^{2}-\frac{1}{x-2}
amplitude of 2cos(x)
amplitude\:2\cos(x)
amplitude of f(x)=cos(x)
amplitude\:f(x)=\cos(x)
line (-27,0),(27,6)
line\:(-27,0),(27,6)
range of 15-x/(8.345)
range\:15-\frac{x}{8.345}
extreme f(x)=(x^2-4x)^2
extreme\:f(x)=(x^{2}-4x)^{2}
parity f(x)=x^3+3
parity\:f(x)=x^{3}+3
inflection 3x^4-24x^3+30x^2
inflection\:3x^{4}-24x^{3}+30x^{2}
inverse of f(x)=(sqrt(x))^4
inverse\:f(x)=(\sqrt{x})^{4}
domain of f(x)=2-sqrt(13-e^{4t)}
domain\:f(x)=2-\sqrt{13-e^{4t}}
inverse of f(x)=x^2,x>= 0
inverse\:f(x)=x^{2},x\ge\:0
critical ln(4)+ln(x)
critical\:\ln(4)+\ln(x)
intercepts of f(x)=2x^2-4x-6
intercepts\:f(x)=2x^{2}-4x-6
(f(x)\circ g(x)),f(x)=x^2,g(x)=x+1
(f(x)\circ\:g(x)),f(x)=x^{2},g(x)=x+1
domain of f(x)=sqrt(4x+1)
domain\:f(x)=\sqrt{4x+1}
intercepts of 8x^4
intercepts\:8x^{4}
asymptotes of (3x^3+4x+5)/(2x^3+3x-5)
asymptotes\:\frac{3x^{3}+4x+5}{2x^{3}+3x-5}
inverse of f(x)=x^2-6x+8
inverse\:f(x)=x^{2}-6x+8
asymptotes of (-x^2)/(x^2+4)
asymptotes\:\frac{-x^{2}}{x^{2}+4}
inverse of 9x^2
inverse\:9x^{2}
intercepts of y=x+2
intercepts\:y=x+2
domain of f(x)=(x^2-x+1)/(x^3+1)
domain\:f(x)=\frac{x^{2}-x+1}{x^{3}+1}
inverse of f(x)=(x+5)/(x-3)
inverse\:f(x)=\frac{x+5}{x-3}
intercepts of f(x)=y+5=2(x+1)y+5=2(x+1)
intercepts\:f(x)=y+5=2(x+1)y+5=2(x+1)
midpoint (2,-1),(-6,0)
midpoint\:(2,-1),(-6,0)
inverse of f(x)=1+\sqrt[3]{x-2}
inverse\:f(x)=1+\sqrt[3]{x-2}
asymptotes of f(x)=(-2x-9)/(4x-19)
asymptotes\:f(x)=\frac{-2x-9}{4x-19}
perpendicular y=8x-13,(2,3)
perpendicular\:y=8x-13,(2,3)
domain of f(x)=((x+3))/(x^2-4x+3)
domain\:f(x)=\frac{(x+3)}{x^{2}-4x+3}
asymptotes of f(x)=xe^x
asymptotes\:f(x)=xe^{x}
inflection f(x)=-x^4-5x^3+7x-3
inflection\:f(x)=-x^{4}-5x^{3}+7x-3
1
..
66
67
68
69
70
..
1322