domain of G
|
domain\:G
|
f(x)=0.2x^3-3.006x^2+15.06x-25.15
|
f(x)=0.2x^{3}-3.006x^{2}+15.06x-25.15
|
f(x)=0.01x^3-0.45x^2+2.43x+300
|
f(x)=0.01x^{3}-0.45x^{2}+2.43x+300
|
f(r)=r^{20}+r^{10}+1
|
f(r)=r^{20}+r^{10}+1
|
F(x)=x^2+2x+1
|
F(x)=x^{2}+2x+1
|
f(x)=(24+x)(600-15x)
|
f(x)=(24+x)(600-15x)
|
f(x)=cos(sqrt(x+1))
|
f(x)=\cos(\sqrt{x+1})
|
f(x)=3e^{x^2-1}
|
f(x)=3e^{x^{2}-1}
|
y=7^{x^3}+7x
|
y=7^{x^{3}}+7x
|
f(x)= 3/2 x-1
|
f(x)=\frac{3}{2}x-1
|
f(x)=sqrt(3-2)
|
f(x)=\sqrt{3-2}
|
midpoint (9,-8)(2,-5)
|
midpoint\:(9,-8)(2,-5)
|
f(x)=4x^{12}
|
f(x)=4x^{12}
|
f(x)=5x+x^4
|
f(x)=5x+x^{4}
|
y=-x^3+2x^2-x-2
|
y=-x^{3}+2x^{2}-x-2
|
y=3(x+7)^2+1
|
y=3(x+7)^{2}+1
|
f(x)=log_{81}(x)
|
f(x)=\log_{81}(x)
|
y=x^{1/5}
|
y=x^{\frac{1}{5}}
|
y=-x^2-4x-7
|
y=-x^{2}-4x-7
|
f(x)=5x^2-2x-8
|
f(x)=5x^{2}-2x-8
|
f(x)=5x^2-2x+2
|
f(x)=5x^{2}-2x+2
|
f(x)=4x^2-12x-9
|
f(x)=4x^{2}-12x-9
|
intercepts of y=-log_{2}(x+2)-3
|
intercepts\:y=-\log_{2}(x+2)-3
|
f(x)=(5x^2-16x-16)/(2x^2+x-21)
|
f(x)=\frac{5x^{2}-16x-16}{2x^{2}+x-21}
|
f(x)=x^2e^x+2sin(x)+sqrt(1/5)
|
f(x)=x^{2}e^{x}+2\sin(x)+\sqrt{\frac{1}{5}}
|
f(x)=-2sin(5x-pi/2)+3
|
f(x)=-2\sin(5x-\frac{π}{2})+3
|
f(x)=2x^3-x^2+2
|
f(x)=2x^{3}-x^{2}+2
|
f(x)=x^2+7x-11
|
f(x)=x^{2}+7x-11
|
f(x)=(x-2)^2-7
|
f(x)=(x-2)^{2}-7
|
y=2-sqrt(x)
|
y=2-\sqrt{x}
|
f(x)=x^2+7x+49
|
f(x)=x^{2}+7x+49
|
y= 1/(x+3)+4
|
y=\frac{1}{x+3}+4
|
f(x)=x^2-1+2x^3
|
f(x)=x^{2}-1+2x^{3}
|
asymptotes of f(x)=(x^2-x-56)/(2x-16)
|
asymptotes\:f(x)=\frac{x^{2}-x-56}{2x-16}
|
range of \sqrt[3]{x-8}
|
range\:\sqrt[3]{x-8}
|
domain of f(x)=7+2/(3-x)
|
domain\:f(x)=7+\frac{2}{3-x}
|
f(x)=(x+1)^{2/3}(x-2)^{1/3}
|
f(x)=(x+1)^{\frac{2}{3}}(x-2)^{\frac{1}{3}}
|
f(x)=-0.23x^3+4.88x^2-29.77x+133.65
|
f(x)=-0.23x^{3}+4.88x^{2}-29.77x+133.65
|
f(x)=(x-4)/(2x+1)
|
f(x)=\frac{x-4}{2x+1}
|
f(θ)=sin(4θ)sin(6θ)
|
f(θ)=\sin(4θ)\sin(6θ)
|
f(x)=sqrt(x^2+4x+4)+sqrt(x^2-6x+9)
|
f(x)=\sqrt{x^{2}+4x+4}+\sqrt{x^{2}-6x+9}
|
y=-(x+2)^2+9
|
y=-(x+2)^{2}+9
|
y= 1/(3+2^x)
|
y=\frac{1}{3+2^{x}}
|
y= k/(x^2)
|
y=\frac{k}{x^{2}}
|
y=(sqrt(6x-5))/(4-3x)
|
y=\frac{\sqrt{6x-5}}{4-3x}
|
f(x)=(4x^2-4x+5)/(2x-1)
|
f(x)=\frac{4x^{2}-4x+5}{2x-1}
|
parity (x^2)/(x^2-1)
|
parity\:\frac{x^{2}}{x^{2}-1}
|
f(x)=-4x^2+172x-1528
|
f(x)=-4x^{2}+172x-1528
|
f(x)=4-x^2,-2<= x<= 2
|
f(x)=4-x^{2},-2\le\:x\le\:2
|
f(x)=(2x+sin(x))/x
|
f(x)=\frac{2x+\sin(x)}{x}
|
y=(x-4)/(e^x)
|
y=\frac{x-4}{e^{x}}
|
U(q)=-q^2+220q-4000
|
U(q)=-q^{2}+220q-4000
|
f(θ)=θcos(θ)
|
f(θ)=θ\cos(θ)
|
f(x)=\sqrt[3]{x^3+2}
|
f(x)=\sqrt[3]{x^{3}+2}
|
f(x)=x^3+4x^2-25x-100
|
f(x)=x^{3}+4x^{2}-25x-100
|
f(x)=e^x(x^2-4x+4)-2
|
f(x)=e^{x}(x^{2}-4x+4)-2
|
f(x)=sqrt(9) x/3 x+(x-1)^3-4/(sqrt(4))
|
f(x)=\sqrt{9}\frac{x}{3}x+(x-1)^{3}-\frac{4}{\sqrt{4}}
|
asymptotes of f(x)=(2x)/(x^2-1)
|
asymptotes\:f(x)=\frac{2x}{x^{2}-1}
|
y=xarctan(4x)
|
y=x\arctan(4x)
|
f(x)=x^3-5x^2+4x+10
|
f(x)=x^{3}-5x^{2}+4x+10
|
f(x)=2x^4+128x
|
f(x)=2x^{4}+128x
|
h(t)=500t-5t^2
|
h(t)=500t-5t^{2}
|
y=cos(-2x)
|
y=\cos(-2x)
|
f(x)=4x^3-12x+3
|
f(x)=4x^{3}-12x+3
|
f(x)=(3x^{1/2})/2
|
f(x)=\frac{3x^{\frac{1}{2}}}{2}
|
P(x)=6x^2+19x+15
|
P(x)=6x^{2}+19x+15
|
f(x)=2+x^3,0<= x<= 1
|
f(x)=2+x^{3},0\le\:x\le\:1
|
f(x)=-e^{-x}-e^x
|
f(x)=-e^{-x}-e^{x}
|
f(x)=x^4-5x^3+2x^2+x+40
|
f(x)=x^{4}-5x^{3}+2x^{2}+x+40
|
y=sin(2x)+cos^2(x)
|
y=\sin(2x)+\cos^{2}(x)
|
u(x)=(5x+1)/(2sqrt(x))
|
u(x)=\frac{5x+1}{2\sqrt{x}}
|
f(G)=|G|
|
f(G)=\left|G\right|
|
y=-log_{2}(-x)
|
y=-\log_{2}(-x)
|
f(x)=log_{18}(x)
|
f(x)=\log_{18}(x)
|
g(x)=\sqrt[3]{x+6}
|
g(x)=\sqrt[3]{x+6}
|
f(x)=(x^4)/(x^2+1)
|
f(x)=\frac{x^{4}}{x^{2}+1}
|
g(x)=2x^2+x+1
|
g(x)=2x^{2}+x+1
|
range of f(x)= x/(x+3)
|
range\:f(x)=\frac{x}{x+3}
|
y=x^2sin(3x)
|
y=x^{2}\sin(3x)
|
f(x)=|4x-7|
|
f(x)=\left|4x-7\right|
|
y=-2^{(-x-1)}-2
|
y=-2^{(-x-1)}-2
|
y=x^2sin(4x)
|
y=x^{2}\sin(4x)
|
f(x)=sqrt(6x-4)
|
f(x)=\sqrt{6x-4}
|
y=4x+3/2
|
y=4x+\frac{3}{2}
|
y=x^2sin(8x)
|
y=x^{2}\sin(8x)
|
f(x)=(x^2-1)/((x+2)^2)
|
f(x)=\frac{x^{2}-1}{(x+2)^{2}}
|
f(x)=6(cos(x))^2-12sin(x)
|
f(x)=6(\cos(x))^{2}-12\sin(x)
|
f(x)=5x^2-4x+2
|
f(x)=5x^{2}-4x+2
|
inflection points of y=x^2*ln(x/8)
|
inflection\:points\:y=x^{2}\cdot\:\ln(\frac{x}{8})
|
f(θ)=-cos^2(θ)+sin(θ)
|
f(θ)=-\cos^{2}(θ)+\sin(θ)
|
y=8x^5+7x^3-4x^{3/2}+cos(2x)
|
y=8x^{5}+7x^{3}-4x^{\frac{3}{2}}+\cos(2x)
|
y=4x^2-5x+6
|
y=4x^{2}-5x+6
|
f(x)=(x-x^2)/(x-1)
|
f(x)=\frac{x-x^{2}}{x-1}
|
g(x)=sqrt(3x)
|
g(x)=\sqrt{3x}
|
g(x)=ln(7-x)
|
g(x)=\ln(7-x)
|
f(x)=8^{-x}-x^2+1
|
f(x)=8^{-x}-x^{2}+1
|
f(x)=2x^7+4-3x^3+5x^8-4x
|
f(x)=2x^{7}+4-3x^{3}+5x^{8}-4x
|
f(x)=x^{4/3}+32x^{1/3}
|
f(x)=x^{\frac{4}{3}}+32x^{\frac{1}{3}}
|
y=(t/(t+1))^6
|
y=(\frac{t}{t+1})^{6}
|
midpoint (0,1)(1,4)
|
midpoint\:(0,1)(1,4)
|