f(x)=(2x-1)^{25}
|
f(x)=(2x-1)^{25}
|
f(t)=-762x^2+44875x-22531
|
f(t)=-762x^{2}+44875x-22531
|
y=sqrt(2)-pix^4+x^{10}
|
y=\sqrt{2}-πx^{4}+x^{10}
|
y=(x+1)^2+5
|
y=(x+1)^{2}+5
|
y=(x+1)^2-5
|
y=(x+1)^{2}-5
|
domain of ln(x)+ln(1-x)
|
domain\:\ln(x)+\ln(1-x)
|
f(x)=6log_{2}(x)
|
f(x)=6\log_{2}(x)
|
f(x)=-3sin(x)cos(x)
|
f(x)=-3\sin(x)\cos(x)
|
f(s)=(s+3)/(s^2+s+3)
|
f(s)=\frac{s+3}{s^{2}+s+3}
|
f(t)=cos(3t)-sin(3t)
|
f(t)=\cos(3t)-\sin(3t)
|
f(x)=-7x^6
|
f(x)=-7x^{6}
|
f(x)=x+45
|
f(x)=x+45
|
f(n)=2^n+1
|
f(n)=2^{n}+1
|
f(j)=cosh(0.942+j^{0.429})
|
f(j)=\cosh(0.942+j^{0.429})
|
f(x)=6x^5-10x^3
|
f(x)=6x^{5}-10x^{3}
|
f(x)=5-sqrt(2-x)
|
f(x)=5-\sqrt{2-x}
|
domain of f(x)=\sqrt[4]{x^2-2x+1}
|
domain\:f(x)=\sqrt[4]{x^{2}-2x+1}
|
f(x)=x^{5/2}
|
f(x)=x^{\frac{5}{2}}
|
f(x)=x+3(1-x)^{1/3}
|
f(x)=x+3(1-x)^{\frac{1}{3}}
|
f(x)=(-3)/(2x+1)
|
f(x)=\frac{-3}{2x+1}
|
f(x)=-1.2(x-4)^2-5
|
f(x)=-1.2(x-4)^{2}-5
|
f(x)=(9x-11)
|
f(x)=(9x-11)^{\circ\:}
|
f(x)=(2x^3-1)/(x^2)
|
f(x)=\frac{2x^{3}-1}{x^{2}}
|
f(x)=(e^{2x-2}ln(2x-1)+1)^3
|
f(x)=(e^{2x-2}\ln(2x-1)+1)^{3}
|
f(x)=sin^4(4x)
|
f(x)=\sin^{4}(4x)
|
f(x)=x^2-11x+17
|
f(x)=x^{2}-11x+17
|
y=ln|-5t^3+2t-3|-6ln(t^{-3t^2})
|
y=\ln\left|-5t^{3}+2t-3\right|-6\ln(t^{-3t^{2}})
|
distance (-6,4)(-8,6)
|
distance\:(-6,4)(-8,6)
|
f(x)=x^3+5x^2+8x+4
|
f(x)=x^{3}+5x^{2}+8x+4
|
f(x)=3x^2+6x+3
|
f(x)=3x^{2}+6x+3
|
f(t)=sqrt(4t^2+5)
|
f(t)=\sqrt{4t^{2}+5}
|
f(x)=4x^2-3x-4
|
f(x)=4x^{2}-3x-4
|
f(x)=x-1-ln(x)
|
f(x)=x-1-\ln(x)
|
f(x)=tan((pix)/4)
|
f(x)=\tan(\frac{πx}{4})
|
f(x)= 1/((x+1)(x-2))
|
f(x)=\frac{1}{(x+1)(x-2)}
|
f(x)=(1/8)(x^3+3x^2-9x-27)
|
f(x)=(\frac{1}{8})(x^{3}+3x^{2}-9x-27)
|
y=-2x^2-4x-5
|
y=-2x^{2}-4x-5
|
y=x^3+4x^2
|
y=x^{3}+4x^{2}
|
shift cos(2x+5)
|
shift\:\cos(2x+5)
|
f(x)=3(x-2)^2
|
f(x)=3(x-2)^{2}
|
x=-4t+2t^2
|
x=-4t+2t^{2}
|
p(x)=(-300x)/((x^2+9)^{3/2)}
|
p(x)=\frac{-300x}{(x^{2}+9)^{\frac{3}{2}}}
|
f(x)=-2x^2+20x-43
|
f(x)=-2x^{2}+20x-43
|
f(x)= 4/(3x+2)
|
f(x)=\frac{4}{3x+2}
|
f(x)=e^2ln(x)
|
f(x)=e^{2}\ln(x)
|
f(x)=x^2-7x-4
|
f(x)=x^{2}-7x-4
|
f(x)=(x^4-3x^3-11x^2+23x+6)/(x^2-x-6)
|
f(x)=\frac{x^{4}-3x^{3}-11x^{2}+23x+6}{x^{2}-x-6}
|
f(t)=sin(t)sin(2t)
|
f(t)=\sin(t)\sin(2t)
|
f(x)=x^3-3x^2-x+1
|
f(x)=x^{3}-3x^{2}-x+1
|
inverse of f(x)=6-4x
|
inverse\:f(x)=6-4x
|
f(x)=(5x-3x^2)/(x-1)
|
f(x)=\frac{5x-3x^{2}}{x-1}
|
y=4sec(x)
|
y=4\sec(x)
|
f(X)=5X
|
f(X)=5X
|
x=2t-2
|
x=2t-2
|
f(x)=log_{5}((x^2-9)/(x+3))
|
f(x)=\log_{5}(\frac{x^{2}-9}{x+3})
|
f(x)=x^5-2x^3
|
f(x)=x^{5}-2x^{3}
|
f(x)=((x^2+2))/x
|
f(x)=\frac{(x^{2}+2)}{x}
|
y=(1/4)^{-x}
|
y=(\frac{1}{4})^{-x}
|
y=sqrt(a^2+x^2)
|
y=\sqrt{a^{2}+x^{2}}
|
y= 1/(x-1)-5
|
y=\frac{1}{x-1}-5
|
line x/2-y/3 =-4
|
line\:\frac{x}{2}-\frac{y}{3}=-4
|
y=0.1^x
|
y=0.1^{x}
|
f(s)=s^2+s+3
|
f(s)=s^{2}+s+3
|
f(s)= 1/(s+3)
|
f(s)=\frac{1}{s+3}
|
y=x^2-18
|
y=x^{2}-18
|
g(x)=(x^3+8)/(x^3+2x^2+3x+6)
|
g(x)=\frac{x^{3}+8}{x^{3}+2x^{2}+3x+6}
|
f(x)=-x-2+(4e^x)/(e^x+1)
|
f(x)=-x-2+\frac{4e^{x}}{e^{x}+1}
|
f(x)=sqrt(-x+1)+3
|
f(x)=\sqrt{-x+1}+3
|
y=-(x-4)^2+4
|
y=-(x-4)^{2}+4
|
y=x^2+11
|
y=x^{2}+11
|
4x+2
|
4x+2
|
domain of f(x)=-4x+5
|
domain\:f(x)=-4x+5
|
f(m)=6m^6-19m^3-7
|
f(m)=6m^{6}-19m^{3}-7
|
f(x)=x^3+x^2-2x+3
|
f(x)=x^{3}+x^{2}-2x+3
|
P(n)=-n^2+12n-20
|
P(n)=-n^{2}+12n-20
|
f(x)= x/(sqrt(9-x^2))
|
f(x)=\frac{x}{\sqrt{9-x^{2}}}
|
ψ(r)=arctan(1/(1-r^2))
|
ψ(r)=\arctan(\frac{1}{1-r^{2}})
|
f(x)=((sin(x)+cos(x)))/(cos(2x))
|
f(x)=\frac{(\sin(x)+\cos(x))}{\cos(2x)}
|
f(x)=3x^2+7x+3
|
f(x)=3x^{2}+7x+3
|
f(x)=3(2)
|
f(x)=3(2)
|
f(x)=3x^3-5x^2+x+3
|
f(x)=3x^{3}-5x^{2}+x+3
|
f(x)=3+sqrt(6x-3)
|
f(x)=3+\sqrt{6x-3}
|
critical points of f(2)=xe^{-4x}
|
critical\:points\:f(2)=xe^{-4x}
|
f(x)=ln(3x+5)
|
f(x)=\ln(3x+5)
|
f(x)= 1/(1-x)*1/(2+x)
|
f(x)=\frac{1}{1-x}\cdot\:\frac{1}{2+x}
|
y=sqrt(1+4x),1<= x<= 5
|
y=\sqrt{1+4x},1\le\:x\le\:5
|
f(x)=((6x^2+16x+5))/((2x))
|
f(x)=\frac{(6x^{2}+16x+5)}{(2x)}
|
f(x)=2^{(x+2)}
|
f(x)=2^{(x+2)}
|
f(x)=e^{x^2}-3ln(arcsin(x^2+1))
|
f(x)=e^{x^{2}}-3\ln(\arcsin(x^{2}+1))
|
y=2sqrt(-3x-15)
|
y=2\sqrt{-3x-15}
|
f(x)=(4x+5)^3
|
f(x)=(4x+5)^{3}
|
f(x)=(sin(x))/((1-cos(x)))
|
f(x)=\frac{\sin(x)}{(1-\cos(x))}
|
g(x)=4(x+4)^2-5
|
g(x)=4(x+4)^{2}-5
|
asymptotes of f(x)=2
|
asymptotes\:f(x)=2
|
parallel y=-4/3 x-17,(4,-12)
|
parallel\:y=-\frac{4}{3}x-17,(4,-12)
|
y=(4x-2)/(x(x^2+1))
|
y=\frac{4x-2}{x(x^{2}+1)}
|
f(20.3)=-5x^2+350x
|
f(20.3)=-5x^{2}+350x
|
f(w)=25+64w^2
|
f(w)=25+64w^{2}
|
y=(x-5)/((x+2)^2)
|
y=\frac{x-5}{(x+2)^{2}}
|
f(x)=((3x+2))/4
|
f(x)=\frac{(3x+2)}{4}
|