f(x)=2e^x+e^{-x}
|
f(x)=2e^{x}+e^{-x}
|
f(x)=((x-5)(x-12))/((x+3)(x-2)(x-5))
|
f(x)=\frac{(x-5)(x-12)}{(x+3)(x-2)(x-5)}
|
f(x)=(x-1)/(ln(x-2))
|
f(x)=\frac{x-1}{\ln(x-2)}
|
y=6x+35
|
y=6x+35
|
y=(2x+3)/(2x^2+x-1)
|
y=\frac{2x+3}{2x^{2}+x-1}
|
domain of f(x)=e^t
|
domain\:f(x)=e^{t}
|
f(x)=-1/6 x^2
|
f(x)=-\frac{1}{6}x^{2}
|
f(x)=4-2sqrt(9-x)
|
f(x)=4-2\sqrt{9-x}
|
f(x)=(3x)/(x^2+2x-8)
|
f(x)=\frac{3x}{x^{2}+2x-8}
|
f(x)=4x^{1/2}+5x^{(-1)/2}
|
f(x)=4x^{\frac{1}{2}}+5x^{\frac{-1}{2}}
|
f(x)=2x^3-11x^2+7x-5
|
f(x)=2x^{3}-11x^{2}+7x-5
|
f(x)= 1/(sqrt(4-2x))
|
f(x)=\frac{1}{\sqrt{4-2x}}
|
f(x)=|x+5|-3
|
f(x)=\left|x+5\right|-3
|
f(x)=-0.4x^2+80x-200
|
f(x)=-0.4x^{2}+80x-200
|
f(x)=sqrt((x^2+6x+5)/(x^2-2x+3))
|
f(x)=\sqrt{\frac{x^{2}+6x+5}{x^{2}-2x+3}}
|
f(x)=-1.5x
|
f(x)=-1.5x
|
intercepts of 2x
|
intercepts\:2x
|
f(x)=sec((pix)/2)
|
f(x)=\sec(\frac{πx}{2})
|
y=e^{x-3}
|
y=e^{x-3}
|
g(x)=ln(2x+8)
|
g(x)=\ln(2x+8)
|
f(x)=(x+3)2-4
|
f(x)=(x+3)2-4
|
y=cos(arcsin(x))
|
y=\cos(\arcsin(x))
|
f(x)=(432+x^4)/(x^3)
|
f(x)=\frac{432+x^{4}}{x^{3}}
|
g(x)=e^{1-x}
|
g(x)=e^{1-x}
|
f(x)=-2x^2-12x+3
|
f(x)=-2x^{2}-12x+3
|
f(n)=5^{n+1}
|
f(n)=5^{n+1}
|
P(x)=x^2-x-6
|
P(x)=x^{2}-x-6
|
range of 3^{x+3}
|
range\:3^{x+3}
|
y=|x-8|
|
y=\left|x-8\right|
|
y=-sqrt(-x)+1
|
y=-\sqrt{-x}+1
|
f(x)=2x^2-9x+10
|
f(x)=2x^{2}-9x+10
|
f(x)=3sqrt(x-3)
|
f(x)=3\sqrt{x-3}
|
f(θ)=cos(8θ)-cos(2θ)
|
f(θ)=\cos(8θ)-\cos(2θ)
|
y=1.5x+1
|
y=1.5x+1
|
y=(x-8)^2+3
|
y=(x-8)^{2}+3
|
f(x)=-x^2+8x+10
|
f(x)=-x^{2}+8x+10
|
y=x^4-18x^2+81
|
y=x^{4}-18x^{2}+81
|
f(x)=x*sqrt(3)
|
f(x)=x\cdot\:\sqrt{3}
|
inflection points of x^4+2x^2
|
inflection\:points\:x^{4}+2x^{2}
|
f(U)=U
|
f(U)=U
|
f(x)=(x^3-3x+1)(x+2)
|
f(x)=(x^{3}-3x+1)(x+2)
|
y=(2/5)x+5
|
y=(\frac{2}{5})x+5
|
f(x)=25x^2-49
|
f(x)=25x^{2}-49
|
y=(2x-4)/(x^2-4)
|
y=\frac{2x-4}{x^{2}-4}
|
P(x)= 3/2 x^3+2x^2+1/2 x+1
|
P(x)=\frac{3}{2}x^{3}+2x^{2}+\frac{1}{2}x+1
|
f(x)=-x^2+8x-10
|
f(x)=-x^{2}+8x-10
|
f(x)=2x^2+4x-70
|
f(x)=2x^{2}+4x-70
|
f(x)=(x^2-5x)(cos(x))
|
f(x)=(x^{2}-5x)(\cos(x))
|
f(x)=-x-10
|
f(x)=-x-10
|
domain of-6cos(5y)
|
domain\:-6\cos(5y)
|
y=cos(x-(3pi)/4)
|
y=\cos(x-\frac{3π}{4})
|
f(x)=(x+2)^{3/4}
|
f(x)=(x+2)^{\frac{3}{4}}
|
f(x)=log_{24}(x)
|
f(x)=\log_{24}(x)
|
f(x)=(sqrt(2))/2
|
f(x)=\frac{\sqrt{2}}{2}
|
f(x)=e^{(((2x+5))/3)}\mod 3
|
f(x)=e^{(\frac{(2x+5)}{3})}\mod\:3
|
f(x)=-2-3x
|
f(x)=-2-3x
|
f(x)=sqrt((2x-5)/(x^2-5x+4))
|
f(x)=\sqrt{\frac{2x-5}{x^{2}-5x+4}}
|
y=sqrt(1-3x^2)
|
y=\sqrt{1-3x^{2}}
|
y=sqrt(2x-9)
|
y=\sqrt{2x-9}
|
domain of (sqrt(x))/(2x^2+x-1)
|
domain\:\frac{\sqrt{x}}{2x^{2}+x-1}
|
f(x)=(4x+2)^2
|
f(x)=(4x+2)^{2}
|
x+1/x
|
x+\frac{1}{x}
|
f(x)=sqrt(-x^2+3x+4)
|
f(x)=\sqrt{-x^{2}+3x+4}
|
f(x)= 1/(sqrt(x^2+3))
|
f(x)=\frac{1}{\sqrt{x^{2}+3}}
|
f(x)=6x^7e^x
|
f(x)=6x^{7}e^{x}
|
y=-x^4+6x^2-4
|
y=-x^{4}+6x^{2}-4
|
y=(5000)/(1+49e^{-0.5x)}
|
y=\frac{5000}{1+49e^{-0.5x}}
|
f(x)=(-4)/(x+4)
|
f(x)=\frac{-4}{x+4}
|
y= 2/((x^3+x))
|
y=\frac{2}{(x^{3}+x)}
|
y=-3x+13
|
y=-3x+13
|
line m=-3/4 ,\at (-5,3)
|
line\:m=-\frac{3}{4},\at\:(-5,3)
|
y=-3x+16
|
y=-3x+16
|
f(x)=4x^3-33x^2+82x-61
|
f(x)=4x^{3}-33x^{2}+82x-61
|
y=e^{2x}sin(5x)
|
y=e^{2x}\sin(5x)
|
h(x)={3x+2,x>= 0},h(x)={5x-1,x<,0}h(8)
|
h(x)=\left\{3x+2,x\ge\:0\right\},h(x)=\left\{5x-1,x<,0\right\}h(8)
|
f(x)=(x^3)/(-x^2+4)
|
f(x)=\frac{x^{3}}{-x^{2}+4}
|
f(x)=64x^2+81
|
f(x)=64x^{2}+81
|
y=-log_{2}(x-4)
|
y=-\log_{2}(x-4)
|
f(x)=x^3+3x^2-4x+5
|
f(x)=x^{3}+3x^{2}-4x+5
|
f(x)=4x^3-16x
|
f(x)=4x^{3}-16x
|
asymptotes of x*e^{4/x}+3
|
asymptotes\:x\cdot\:e^{\frac{4}{x}}+3
|
f(x)=(5x^2-1)(5x^2+1)
|
f(x)=(5x^{2}-1)(5x^{2}+1)
|
y=-4/x
|
y=-\frac{4}{x}
|
f(x)=x^2-6x-40
|
f(x)=x^{2}-6x-40
|
f(x)=-20(x-6)^{12}(x-2)^7
|
f(x)=-20(x-6)^{12}(x-2)^{7}
|
f(x)=sqrt(3-x)-sqrt(x^2-1)
|
f(x)=\sqrt{3-x}-\sqrt{x^{2}-1}
|
f(x)=-x^9
|
f(x)=-x^{9}
|
g(x)=e^x-7
|
g(x)=e^{x}-7
|
f(x)=sin^4(sqrt(3x+2))
|
f(x)=\sin^{4}(\sqrt{3x+2})
|
f(x)=-3e^{x^2+x-1}
|
f(x)=-3e^{x^{2}+x-1}
|
f(t)=sqrt(9sin^2(4t)-1)
|
f(t)=\sqrt{9\sin^{2}(4t)-1}
|
range of 1/x+1
|
range\:\frac{1}{x}+1
|
f(x)=3x^2-1+x^4
|
f(x)=3x^{2}-1+x^{4}
|
f(x)=2*2-4x
|
f(x)=2\cdot\:2-4x
|
f(x)=(2x^4-1)(4x-1)
|
f(x)=(2x^{4}-1)(4x-1)
|
f(x)=(3x^2+15)/(x^2+3)
|
f(x)=\frac{3x^{2}+15}{x^{2}+3}
|
f(x)=x,-pi<x<pi
|
f(x)=x,-π<x<π
|
f(x)=(3x)/2-1/3
|
f(x)=\frac{3x}{2}-\frac{1}{3}
|
f(x)=sqrt((x^2+2x+1)/(x^2-1))
|
f(x)=\sqrt{\frac{x^{2}+2x+1}{x^{2}-1}}
|
y=2sin(x-pi/4)
|
y=2\sin(x-\frac{π}{4})
|