extreme f(x)=-x^2-25
|
extreme\:f(x)=-x^{2}-25
|
extreme f(x)=2sqrt(x+1)-sqrt(x-1)
|
extreme\:f(x)=2\sqrt{x+1}-\sqrt{x-1}
|
extreme f(x)=x^4-x^3-7x^2+x+6
|
extreme\:f(x)=x^{4}-x^{3}-7x^{2}+x+6
|
minimum-x^2-x+3
|
minimum\:-x^{2}-x+3
|
extreme f(x)=x^4-12x^2-3x+2
|
extreme\:f(x)=x^{4}-12x^{2}-3x+2
|
extreme f(x)=x(-0.0002x+3.5)-2500
|
extreme\:f(x)=x(-0.0002x+3.5)-2500
|
f(x,y)=60x+6y+12xy-3x^2-6y^2+100
|
f(x,y)=60x+6y+12xy-3x^{2}-6y^{2}+100
|
minimum x^3-6x^2
|
minimum\:x^{3}-6x^{2}
|
extreme f(x)=x^2+6x+11
|
extreme\:f(x)=x^{2}+6x+11
|
extreme f(x)=x^2+6x+17
|
extreme\:f(x)=x^{2}+6x+17
|
intercepts of y=9x^2+6x+1
|
intercepts\:y=9x^{2}+6x+1
|
extreme f(x)=x^2+6x+16
|
extreme\:f(x)=x^{2}+6x+16
|
extreme f(x)=4x^3+6x^2
|
extreme\:f(x)=4x^{3}+6x^{2}
|
extreme g(x)=8-5sin(x),0<= x<= pi
|
extreme\:g(x)=8-5\sin(x),0\le\:x\le\:π
|
extreme y=-(x^3)/((x+2)(x-1))
|
extreme\:y=-\frac{x^{3}}{(x+2)(x-1)}
|
extreme f(x)=13x+1/x
|
extreme\:f(x)=13x+\frac{1}{x}
|
extreme f(x)=-3t^2+132t+100
|
extreme\:f(x)=-3t^{2}+132t+100
|
extreme f(x)=3x
|
extreme\:f(x)=3x
|
extreme 3x^2-12x+2y^2-8y+7
|
extreme\:3x^{2}-12x+2y^{2}-8y+7
|
extreme f(x)=[2-x],-2<= x<= 2
|
extreme\:f(x)=[2-x],-2\le\:x\le\:2
|
shift f(x)=4sin(2x+2pi)
|
shift\:f(x)=4\sin(2x+2\pi)
|
intercepts of y=x^2-6x+8
|
intercepts\:y=x^{2}-6x+8
|
midpoint (-12,6)(-8,-13)
|
midpoint\:(-12,6)(-8,-13)
|
extreme (x^3)/(1+x^2)
|
extreme\:\frac{x^{3}}{1+x^{2}}
|
f(x)=((x^2+y^2)(e^{y^2-x^2}))
|
f(x)=((x^{2}+y^{2})(e^{y^{2}-x^{2}}))
|
minimum f(x)=x^2
|
minimum\:f(x)=x^{2}
|
extreme f(x)=-1
|
extreme\:f(x)=-1
|
f(x,y)=3-x+4x^2-2xy+y^2+x^3+5xy^2
|
f(x,y)=3-x+4x^{2}-2xy+y^{2}+x^{3}+5xy^{2}
|
extreme f(x)=2x^3-36x^2+120x+2
|
extreme\:f(x)=2x^{3}-36x^{2}+120x+2
|
extreme 4sin^2(x)
|
extreme\:4\sin^{2}(x)
|
extreme 2y^3-12yx+3x^2+18y
|
extreme\:2y^{3}-12yx+3x^{2}+18y
|
parallel y= 5/2 x+5
|
parallel\:y=\frac{5}{2}x+5
|
extreme f(x)=(3x^2)/(x-2)
|
extreme\:f(x)=\frac{3x^{2}}{x-2}
|
extreme (5-x)/(x+2)
|
extreme\:\frac{5-x}{x+2}
|
extreme f(x)=x^2-9x+14
|
extreme\:f(x)=x^{2}-9x+14
|
extreme f(x)=e^{2x}-4e^x
|
extreme\:f(x)=e^{2x}-4e^{x}
|
extreme f(x)=4x^3+21x^2+36x-20
|
extreme\:f(x)=4x^{3}+21x^{2}+36x-20
|
extreme (x^2-15)/(x-4)
|
extreme\:\frac{x^{2}-15}{x-4}
|
extreme f(x)=e^x,0<= x<= ln(18)
|
extreme\:f(x)=e^{x},0\le\:x\le\:\ln(18)
|
extreme f(x)=2x^3-6x^2-210x+7
|
extreme\:f(x)=2x^{3}-6x^{2}-210x+7
|
extreme f(x)=-3x^5+5x^3+1
|
extreme\:f(x)=-3x^{5}+5x^{3}+1
|
extreme f(x)=-2+x-x^2
|
extreme\:f(x)=-2+x-x^{2}
|
domain of f(x)=sqrt(x^3-x)
|
domain\:f(x)=\sqrt{x^{3}-x}
|
minimum f(x,y)=x^2+y^2+4x-2y+6
|
minimum\:f(x,y)=x^{2}+y^{2}+4x-2y+6
|
extreme f(x)=(4860)/x+18x+724924
|
extreme\:f(x)=\frac{4860}{x}+18x+724924
|
extreme f(x)=3xsqrt(4-3x)
|
extreme\:f(x)=3x\sqrt{4-3x}
|
extreme sqrt(x^2+y^2+4x+20)
|
extreme\:\sqrt{x^{2}+y^{2}+4x+20}
|
extreme (-x+5)/(x^2)
|
extreme\:\frac{-x+5}{x^{2}}
|
extreme f(x)= x/(x+3),-1<= x<= 6
|
extreme\:f(x)=\frac{x}{x+3},-1\le\:x\le\:6
|
f(x)=4xy^2+10x-4y^4+9
|
f(x)=4xy^{2}+10x-4y^{4}+9
|
extreme f(x)=x^3-6x^2+9x+10
|
extreme\:f(x)=x^{3}-6x^{2}+9x+10
|
extreme sqrt(4x+1)
|
extreme\:\sqrt{4x+1}
|
distance (5,-6)(8,-9)
|
distance\:(5,-6)(8,-9)
|
extreme f(x)=2x^{-3}-x^{-2}
|
extreme\:f(x)=2x^{-3}-x^{-2}
|
extreme f(x)=(x^6)/6-ln(x)
|
extreme\:f(x)=\frac{x^{6}}{6}-\ln(x)
|
extreme f(x)=4x^3-4x^2-4x+6,-1<= x<= 2
|
extreme\:f(x)=4x^{3}-4x^{2}-4x+6,-1\le\:x\le\:2
|
minimum f(x,y)=x^2+xy+y^2-10y+33
|
minimum\:f(x,y)=x^{2}+xy+y^{2}-10y+33
|
minimum x^4-8x^2
|
minimum\:x^{4}-8x^{2}
|
extreme f(x)=cos(x)-5x,0<= x<= 4pi
|
extreme\:f(x)=\cos(x)-5x,0\le\:x\le\:4π
|
extreme 4x^3-6x
|
extreme\:4x^{3}-6x
|
extreme y*ln(x)+y
|
extreme\:y\cdot\:\ln(x)+y
|
extreme 5x+5sin(x)
|
extreme\:5x+5\sin(x)
|
extreme 80x-16x^2
|
extreme\:80x-16x^{2}
|
inverse of f(x)=sqrt(x)+12
|
inverse\:f(x)=\sqrt{x}+12
|
extreme f(x)=19+4x-x^2,0<= x<= 5
|
extreme\:f(x)=19+4x-x^{2},0\le\:x\le\:5
|
extreme x^2+3x-7
|
extreme\:x^{2}+3x-7
|
extreme x^2+3x-4
|
extreme\:x^{2}+3x-4
|
extreme f(x)=6x^4-8x^3+2
|
extreme\:f(x)=6x^{4}-8x^{3}+2
|
f(x,y)=x^3-y^2-3x-2y-2xy-3
|
f(x,y)=x^{3}-y^{2}-3x-2y-2xy-3
|
extreme f(x)=2x-(32)/x
|
extreme\:f(x)=2x-\frac{32}{x}
|
extreme f(x)=2x-4/x
|
extreme\:f(x)=2x-\frac{4}{x}
|
extreme f(x)=((4x-18))/((x-9)^2)
|
extreme\:f(x)=\frac{(4x-18)}{(x-9)^{2}}
|
extreme f(x,y)=11x^2-2x^3+2y^2+4xy
|
extreme\:f(x,y)=11x^{2}-2x^{3}+2y^{2}+4xy
|
y=x(-2t+2)
|
y=x(-2t+2)
|
domain of f(x)= 1/(x+4)
|
domain\:f(x)=\frac{1}{x+4}
|
extreme y=2x^3-6x
|
extreme\:y=2x^{3}-6x
|
extreme-(6x)/(3x^2+8)
|
extreme\:-\frac{6x}{3x^{2}+8}
|
extreme f(x)=1-x^2-x-3y^2+y
|
extreme\:f(x)=1-x^{2}-x-3y^{2}+y
|
extreme 6x-4y-x^2-2y^2
|
extreme\:6x-4y-x^{2}-2y^{2}
|
extreme 6x^4+32x^3
|
extreme\:6x^{4}+32x^{3}
|
extreme f(x)=x(20-43+2x)(43/2-x)
|
extreme\:f(x)=x(20-43+2x)(\frac{43}{2}-x)
|
extreme x^4-2x^2-2
|
extreme\:x^{4}-2x^{2}-2
|
extreme x^4-2x^2+1
|
extreme\:x^{4}-2x^{2}+1
|
extreme y=6sqrt(3)x+12cos(x)
|
extreme\:y=6\sqrt{3}x+12\cos(x)
|
f(x,y)=x^2+7y^2+x-6y+4
|
f(x,y)=x^{2}+7y^{2}+x-6y+4
|
intercepts of (2x+6)/(-6x+3)
|
intercepts\:\frac{2x+6}{-6x+3}
|
extreme f(x)=2x^2ln(x)-19x^2
|
extreme\:f(x)=2x^{2}\ln(x)-19x^{2}
|
f(x,y)=x^2+9xy+y^2
|
f(x,y)=x^{2}+9xy+y^{2}
|
extreme f(x)=x^4-12x^3+4
|
extreme\:f(x)=x^{4}-12x^{3}+4
|
extreme f(x)=2x^3+45x^2-300x,4<= x<= 11
|
extreme\:f(x)=2x^{3}+45x^{2}-300x,4\le\:x\le\:11
|
extreme f(x)=2x^4-x^2
|
extreme\:f(x)=2x^{4}-x^{2}
|
extreme f(x)=x^2+1/x
|
extreme\:f(x)=x^{2}+\frac{1}{x}
|
p(x)=12x^4+15x^3+ax^2-69x-30
|
p(x)=12x^{4}+15x^{3}+ax^{2}-69x-30
|
f(x,y)=x+2 y/2 x+y
|
f(x,y)=x+2\frac{y}{2}x+y
|
f(x,y)=16-(x-2)^2-(y-2)^2
|
f(x,y)=16-(x-2)^{2}-(y-2)^{2}
|
extreme f(x)=x^4-18x^2-3
|
extreme\:f(x)=x^{4}-18x^{2}-3
|
inverse of f(x)=(2x+1)/(x-5)
|
inverse\:f(x)=\frac{2x+1}{x-5}
|
extreme f(x)=13+2x-x^2,0<= x<= 5
|
extreme\:f(x)=13+2x-x^{2},0\le\:x\le\:5
|
extreme f(x)=x^4-18x^2+5
|
extreme\:f(x)=x^{4}-18x^{2}+5
|
f(x)=(x^3-4xy)e^{-2y}
|
f(x)=(x^{3}-4xy)e^{-2y}
|