line m=-6,(7,8)
|
line\:m=-6,(7,8)
|
extreme f(x)=(2+x)^2(1-x)^2
|
extreme\:f(x)=(2+x)^{2}(1-x)^{2}
|
extreme y=6x-ln(6x)
|
extreme\:y=6x-\ln(6x)
|
extreme f(x)=x+e^{-3x},-2<= x<= 2
|
extreme\:f(x)=x+e^{-3x},-2\le\:x\le\:2
|
extreme f(x)=7+81x-3x^3
|
extreme\:f(x)=7+81x-3x^{3}
|
extreme f(x,y)=7x-8y+2xy-x^2+y^1
|
extreme\:f(x,y)=7x-8y+2xy-x^{2}+y^{1}
|
extreme f(x)= 6/x
|
extreme\:f(x)=\frac{6}{x}
|
extreme f(x,y)=(x-y)(9-xy)
|
extreme\:f(x,y)=(x-y)(9-xy)
|
extreme f(x)=x+(49)/x+9,1<= x<= 98
|
extreme\:f(x)=x+\frac{49}{x}+9,1\le\:x\le\:98
|
extreme f(x)=x^2+y^2-4x+4y
|
extreme\:f(x)=x^{2}+y^{2}-4x+4y
|
inverse of f(x)=y=x^2
|
inverse\:f(x)=y=x^{2}
|
shift sin(x)+6
|
shift\:\sin(x)+6
|
extreme f(x)=x^2+(200)/x
|
extreme\:f(x)=x^{2}+\frac{200}{x}
|
extreme-0.1t^2+0.8t+98.8,0<= t>= 8
|
extreme\:-0.1t^{2}+0.8t+98.8,0\le\:t\ge\:8
|
extreme x^8ln(x)
|
extreme\:x^{8}\ln(x)
|
extreme f(x)=x^6+4x^5+10
|
extreme\:f(x)=x^{6}+4x^{5}+10
|
F(x,y)=2x^5+x^3y^2+6xy^4
|
F(x,y)=2x^{5}+x^{3}y^{2}+6xy^{4}
|
extreme f(x)=(9x)/(x^2+9)
|
extreme\:f(x)=\frac{9x}{x^{2}+9}
|
extreme f(x)=-6x^2+30x-36
|
extreme\:f(x)=-6x^{2}+30x-36
|
extreme f(x)=x^3+3xy-y^3
|
extreme\:f(x)=x^{3}+3xy-y^{3}
|
extreme f(x,y)=-8xy+2x^4+2y^4
|
extreme\:f(x,y)=-8xy+2x^{4}+2y^{4}
|
extreme f(x)=2x-sin(x),0<= x<= pi
|
extreme\:f(x)=2x-\sin(x),0\le\:x\le\:π
|
asymptotes of f(x)=(x-2)/((x-2)^2)
|
asymptotes\:f(x)=\frac{x-2}{(x-2)^{2}}
|
extreme f(x,y)=2x^2+3y^2-4x-8
|
extreme\:f(x,y)=2x^{2}+3y^{2}-4x-8
|
minimum 13+4x-x^2
|
minimum\:13+4x-x^{2}
|
extreme f(x)=(ln(x))/(x^3)
|
extreme\:f(x)=\frac{\ln(x)}{x^{3}}
|
f(x,y)=2x^2-3xy+4
|
f(x,y)=2x^{2}-3xy+4
|
extreme f(x)=x^4-18x^2+11
|
extreme\:f(x)=x^{4}-18x^{2}+11
|
extreme f(x,y)=-5x^2y+5xy^2
|
extreme\:f(x,y)=-5x^{2}y+5xy^{2}
|
extreme f(x)=-x^3+3x^2+9x-6
|
extreme\:f(x)=-x^{3}+3x^{2}+9x-6
|
f(x,y)=(x^2)/8+(y^2)/2-1
|
f(x,y)=\frac{x^{2}}{8}+\frac{y^{2}}{2}-1
|
f(x)=x_{2}-x_{1}
|
f(x)=x_{2}-x_{1}
|
minimum 3x^2+15x+18
|
minimum\:3x^{2}+15x+18
|
perpendicular (1,-5)y=18x+2
|
perpendicular\:(1,-5)y=18x+2
|
extreme-2x^3-27x^2-84x-3
|
extreme\:-2x^{3}-27x^{2}-84x-3
|
f(t)=(3-t)u_{4}(t)
|
f(t)=(3-t)u_{4}(t)
|
extreme xsqrt(x^2+4)
|
extreme\:x\sqrt{x^{2}+4}
|
extreme f(x)=2x^3-30x^2+126x-3
|
extreme\:f(x)=2x^{3}-30x^{2}+126x-3
|
extreme f(x)=x^2+y^2-5x-4y+xy
|
extreme\:f(x)=x^{2}+y^{2}-5x-4y+xy
|
extreme f(x)=6x^2-8x^4
|
extreme\:f(x)=6x^{2}-8x^{4}
|
extreme f(x)=4x+x^2+2
|
extreme\:f(x)=4x+x^{2}+2
|
extreme 1+7/x-4/(x^2)
|
extreme\:1+\frac{7}{x}-\frac{4}{x^{2}}
|
extreme xsqrt(x^2+9)
|
extreme\:x\sqrt{x^{2}+9}
|
f(x)=(x^2-4)/(x-1)y
|
f(x)=\frac{x^{2}-4}{x-1}y
|
domain of (1/(sqrt(x)))^2-9
|
domain\:(\frac{1}{\sqrt{x}})^{2}-9
|
extreme f(x)=2+12x^2-8x^3
|
extreme\:f(x)=2+12x^{2}-8x^{3}
|
extreme f(x)=x^2+y^2-6xy+3x+6y-2
|
extreme\:f(x)=x^{2}+y^{2}-6xy+3x+6y-2
|
extreme f(x,y,z)=z
|
extreme\:f(x,y,z)=z
|
minimum-3^{2x-4}-5
|
minimum\:-3^{2x-4}-5
|
extreme f(x)=(8x-9)e^{4x}
|
extreme\:f(x)=(8x-9)e^{4x}
|
extreme y=6xe^{-x^2}
|
extreme\:y=6xe^{-x^{2}}
|
extreme 2x^2+y^2
|
extreme\:2x^{2}+y^{2}
|
extreme f(x)=3csc(x)
|
extreme\:f(x)=3\csc(x)
|
extreme f(x)=-xe^{-x}-4e^{-x}
|
extreme\:f(x)=-xe^{-x}-4e^{-x}
|
extreme f(x)=20x^3+9x^2-24x+12
|
extreme\:f(x)=20x^{3}+9x^{2}-24x+12
|
domain of f(x)=(x^2+3x-2)/(x^2-5x+6)
|
domain\:f(x)=\frac{x^{2}+3x-2}{x^{2}-5x+6}
|
extreme f(x)=x^2+9x+14
|
extreme\:f(x)=x^{2}+9x+14
|
extreme f(x)=-x^2-5x+1
|
extreme\:f(x)=-x^{2}-5x+1
|
extreme f(x)=(x^4)/4-(4x^3)/3+2x^2-1
|
extreme\:f(x)=\frac{x^{4}}{4}-\frac{4x^{3}}{3}+2x^{2}-1
|
extreme-30x^2-25y^2+480x+300y+170
|
extreme\:-30x^{2}-25y^{2}+480x+300y+170
|
extreme f(x)=((x-2)^2)/(x-5)
|
extreme\:f(x)=\frac{(x-2)^{2}}{x-5}
|
extreme f(x)=-x^2-5x-2
|
extreme\:f(x)=-x^{2}-5x-2
|
extreme f(x)=3x^3+4x^2+3x-1
|
extreme\:f(x)=3x^{3}+4x^{2}+3x-1
|
F(X,Y)=1-X^2+2Y^2
|
F(X,Y)=1-X^{2}+2Y^{2}
|
extreme f(x)=8+12x^2-8x^3
|
extreme\:f(x)=8+12x^{2}-8x^{3}
|
extreme f(x)=x^3-15x^2+78x+5
|
extreme\:f(x)=x^{3}-15x^{2}+78x+5
|
asymptotes of f(x)=((3x))/(7x+14)
|
asymptotes\:f(x)=\frac{(3x)}{7x+14}
|
extreme x^2-2xy+2y^2-2x+4y-1
|
extreme\:x^{2}-2xy+2y^{2}-2x+4y-1
|
extreme f(x)=-2sin(x)cos(x)
|
extreme\:f(x)=-2\sin(x)\cos(x)
|
extreme f(x,y)=-2x^3+6xy+3y^3
|
extreme\:f(x,y)=-2x^{3}+6xy+3y^{3}
|
extreme f(x)=14x^2-x^3
|
extreme\:f(x)=14x^{2}-x^{3}
|
extreme f(x)=x^3-3x^2+6x-8
|
extreme\:f(x)=x^{3}-3x^{2}+6x-8
|
extreme f(x)=(4(x-10)^2)/(x-6),(0,6)
|
extreme\:f(x)=\frac{4(x-10)^{2}}{x-6},(0,6)
|
extreme f(x)=15x^{2/3}-x
|
extreme\:f(x)=15x^{\frac{2}{3}}-x
|
f(x,y)=x^2+2x+y^2-2y+2
|
f(x,y)=x^{2}+2x+y^{2}-2y+2
|
extreme f(x,y)=x^2+2xy-xy^2
|
extreme\:f(x,y)=x^{2}+2xy-xy^{2}
|
extreme y=(x^2-9x+39)/(x-7)
|
extreme\:y=\frac{x^{2}-9x+39}{x-7}
|
critical points of f(x)=2x^3-9x^2-24x+20
|
critical\:points\:f(x)=2x^{3}-9x^{2}-24x+20
|
extreme 1/((x+1)^2)
|
extreme\:\frac{1}{(x+1)^{2}}
|
extreme f(x)=x(x^2-12)
|
extreme\:f(x)=x(x^{2}-12)
|
f(x,y)=(x+y^2)*e^{2x}
|
f(x,y)=(x+y^{2})\cdot\:e^{2x}
|
extreme f(x,y)=8e^{(((-x^2-y^2))/4)}
|
extreme\:f(x,y)=8e^{(\frac{(-x^{2}-y^{2})}{4})}
|
f(x,y)=ln(16-x^2-16y^2)
|
f(x,y)=\ln(16-x^{2}-16y^{2})
|
extreme f(x)= 1/3 x^3+13/2 x^2+42x+3
|
extreme\:f(x)=\frac{1}{3}x^{3}+\frac{13}{2}x^{2}+42x+3
|
extreme (x^2+2x)e^{-x}
|
extreme\:(x^{2}+2x)e^{-x}
|
extreme-7x^3+21x+5
|
extreme\:-7x^{3}+21x+5
|
extreme 5x^2e^{-x}
|
extreme\:5x^{2}e^{-x}
|
inverse of f(x)=3x^3+2
|
inverse\:f(x)=3x^{3}+2
|
minimum x^3
|
minimum\:x^{3}
|
extreme ((3x-1))/x
|
extreme\:\frac{(3x-1)}{x}
|
extreme f(x)=x^2(2-4x)^3
|
extreme\:f(x)=x^{2}(2-4x)^{3}
|
f(x,y)=e^{-(x^2+y^2)}(x+y^2)+(1/2)
|
f(x,y)=e^{-(x^{2}+y^{2})}(x+y^{2})+(\frac{1}{2})
|
extreme f(x)=(3x^2)/(x^2+3)
|
extreme\:f(x)=\frac{3x^{2}}{x^{2}+3}
|
minimum (x^3)/3-(3x^2)/2-4x+8
|
minimum\:\frac{x^{3}}{3}-\frac{3x^{2}}{2}-4x+8
|
f(x,y)=x^3+9y^4-20x^2y+2
|
f(x,y)=x^{3}+9y^{4}-20x^{2}y+2
|
extreme 2x^3+3x^2+4
|
extreme\:2x^{3}+3x^{2}+4
|
domain of 9x-16
|
domain\:9x-16
|
extreme f(x)=x^2+2y^2-4x+8y
|
extreme\:f(x)=x^{2}+2y^{2}-4x+8y
|
extreme f(x)=(2-x)/(5+x)
|
extreme\:f(x)=\frac{2-x}{5+x}
|
extreme f(x)=x^{(2/5)}(7/(2+x))
|
extreme\:f(x)=x^{(\frac{2}{5})}(\frac{7}{2+x})
|