extreme 7x(1+12x^2)^{-2}
|
extreme\:7x(1+12x^{2})^{-2}
|
extreme f(x)=4sin(x)+3cos(x),0<= x<= 2pi
|
extreme\:f(x)=4\sin(x)+3\cos(x),0\le\:x\le\:2π
|
f(x,y)=2x^2+4xy-x^2y-4x
|
f(x,y)=2x^{2}+4xy-x^{2}y-4x
|
extreme 5x^2(x+1)^{1/2}
|
extreme\:5x^{2}(x+1)^{\frac{1}{2}}
|
extreme f(x)=ye^x+xy^2
|
extreme\:f(x)=ye^{x}+xy^{2}
|
extreme f(x)=x^3-8y^3+4xy-8
|
extreme\:f(x)=x^{3}-8y^{3}+4xy-8
|
critical points of (dx)/x x(x-4)^3
|
critical\:points\:\frac{dx}{x}x(x-4)^{3}
|
asymptotes of f(x)=(x^2-x-2)/(-x^2-4x-4)
|
asymptotes\:f(x)=\frac{x^{2}-x-2}{-x^{2}-4x-4}
|
extreme 7+12x-x^3
|
extreme\:7+12x-x^{3}
|
extreme f(x)=x+e^{-3x},-3<= x<= 4
|
extreme\:f(x)=x+e^{-3x},-3\le\:x\le\:4
|
extreme f(x)=xe^{-e},0<= x<= 2
|
extreme\:f(x)=xe^{-e},0\le\:x\le\:2
|
extreme f(x)=4x^2-16x
|
extreme\:f(x)=4x^{2}-16x
|
minimum 2-2x^2
|
minimum\:2-2x^{2}
|
extreme f(x,y)=10x^2-7y^2
|
extreme\:f(x,y)=10x^{2}-7y^{2}
|
extreme f(x)=-(4/(x^2))
|
extreme\:f(x)=-(\frac{4}{x^{2}})
|
extreme f(x)=x^3-27x+63
|
extreme\:f(x)=x^{3}-27x+63
|
extreme f(x)=(8x)/(x^2+9),0<= x<= 9
|
extreme\:f(x)=\frac{8x}{x^{2}+9},0\le\:x\le\:9
|
extreme f(x)=-3x^2-2y^2+3x-4y+5
|
extreme\:f(x)=-3x^{2}-2y^{2}+3x-4y+5
|
domain of f(x)=sqrt(x+8)
|
domain\:f(x)=\sqrt{x+8}
|
extreme f(x)=x^3-27x+55
|
extreme\:f(x)=x^{3}-27x+55
|
extreme 1/2 x^{2/3}(2x-5)
|
extreme\:\frac{1}{2}x^{\frac{2}{3}}(2x-5)
|
extreme f(x)=x+(25)/x+4,1<= x<= 50
|
extreme\:f(x)=x+\frac{25}{x}+4,1\le\:x\le\:50
|
f(x,y)=sqrt(400-4x^2-81y^2)
|
f(x,y)=\sqrt{400-4x^{2}-81y^{2}}
|
extreme f(x)=((x+5))/(x^2-2x-35)
|
extreme\:f(x)=\frac{(x+5)}{x^{2}-2x-35}
|
f(x)=2x-5y+3
|
f(x)=2x-5y+3
|
extreme f(x)=x^2+2y^2+3x+10
|
extreme\:f(x)=x^{2}+2y^{2}+3x+10
|
extreme f(x)=8cos(θ)+7sin(θ)
|
extreme\:f(x)=8\cos(θ)+7\sin(θ)
|
critical points of f(x)=0.05x+20+(125)/x
|
critical\:points\:f(x)=0.05x+20+\frac{125}{x}
|
extreme (11-x)(x+1)^2
|
extreme\:(11-x)(x+1)^{2}
|
minimum f(x,y)=2x^4+2y^4-xy
|
minimum\:f(x,y)=2x^{4}+2y^{4}-xy
|
extreme f(x)= 7/2 x^2+7/2-7x-4
|
extreme\:f(x)=\frac{7}{2}x^{2}+\frac{7}{2}-7x-4
|
extreme (2ln(x))/x
|
extreme\:\frac{2\ln(x)}{x}
|
extreme f(x)=x^4-24x^2+64x+16
|
extreme\:f(x)=x^{4}-24x^{2}+64x+16
|
extreme f(x)=(4x)/(x^2-1)
|
extreme\:f(x)=\frac{4x}{x^{2}-1}
|
extreme f(x)=(x^3)/(e^{8x)}
|
extreme\:f(x)=\frac{x^{3}}{e^{8x}}
|
extreme f(x)=xe^{-(x^2)/(32)}
|
extreme\:f(x)=xe^{-\frac{x^{2}}{32}}
|
extreme x^{25/3}-6x^{19/3}
|
extreme\:x^{\frac{25}{3}}-6x^{\frac{19}{3}}
|
inverse of y=1.5^x+4
|
inverse\:y=1.5^{x}+4
|
extreme f(x)= x/(x-2),3<= x<= 4
|
extreme\:f(x)=\frac{x}{x-2},3\le\:x\le\:4
|
extreme f(x)=x^2+y^2-6x+4y-10
|
extreme\:f(x)=x^{2}+y^{2}-6x+4y-10
|
extreme 2x^2(1-x^2)
|
extreme\:2x^{2}(1-x^{2})
|
P(x,y)=-4x+52y-x^2+2xy-7y^2+9
|
P(x,y)=-4x+52y-x^{2}+2xy-7y^{2}+9
|
extreme f(x)=40+160=200
|
extreme\:f(x)=40+160=200
|
extreme 2x^3+3x^2-336x
|
extreme\:2x^{3}+3x^{2}-336x
|
extreme f(x)=(6x)/((x^2-4))
|
extreme\:f(x)=\frac{6x}{(x^{2}-4)}
|
minimum x/((x+1)^2)
|
minimum\:\frac{x}{(x+1)^{2}}
|
extreme f(x)=(x^3)/(6x^2+4)
|
extreme\:f(x)=\frac{x^{3}}{6x^{2}+4}
|
domain of f(x)=-3x+6
|
domain\:f(x)=-3x+6
|
f(x,y)=x^2+y^2+2
|
f(x,y)=x^{2}+y^{2}+2
|
extreme f(x)=2x^3-x^2-4x-6
|
extreme\:f(x)=2x^{3}-x^{2}-4x-6
|
extreme x^2+2y^2-2x-12y+19
|
extreme\:x^{2}+2y^{2}-2x-12y+19
|
extreme f(x)=2x^3-x^2-4x+2
|
extreme\:f(x)=2x^{3}-x^{2}-4x+2
|
extreme f(x)=2x^3-12x^2+18x+5
|
extreme\:f(x)=2x^{3}-12x^{2}+18x+5
|
extreme f(x)=2x*ln(x)
|
extreme\:f(x)=2x\cdot\:\ln(x)
|
extreme f(x)=5x^{1/3}-x^{5/3}
|
extreme\:f(x)=5x^{\frac{1}{3}}-x^{\frac{5}{3}}
|
extreme 6x^2+30x-84
|
extreme\:6x^{2}+30x-84
|
inflection points of f(x)=xsqrt(x+1)
|
inflection\:points\:f(x)=x\sqrt{x+1}
|
y=r-(x-sqrt(r))^2
|
y=r-(x-\sqrt{r})^{2}
|
extreme f(x)=2x^3-30x^2+96x+4,0<= x<= 12
|
extreme\:f(x)=2x^{3}-30x^{2}+96x+4,0\le\:x\le\:12
|
extreme f(x)=3x-x^2+40
|
extreme\:f(x)=3x-x^{2}+40
|
f(x,y)=e^{-x^2-y^2}(x^2+2y^2)
|
f(x,y)=e^{-x^{2}-y^{2}}(x^{2}+2y^{2})
|
minimum f(x)=2x-12sqrt(x-6)
|
minimum\:f(x)=2x-12\sqrt{x-6}
|
extreme f(x)=(x-4)^2(x-2)
|
extreme\:f(x)=(x-4)^{2}(x-2)
|
extreme f(x)=x^4-32x^2+2
|
extreme\:f(x)=x^{4}-32x^{2}+2
|
extreme f(x)=x^4-32x^2+4
|
extreme\:f(x)=x^{4}-32x^{2}+4
|
extreme f(x)=x^4-32x^2+3
|
extreme\:f(x)=x^{4}-32x^{2}+3
|
extreme x^4+2x^3+x^2+2x+2
|
extreme\:x^{4}+2x^{3}+x^{2}+2x+2
|
domain of (x+7)/(x^2+7x+6)
|
domain\:\frac{x+7}{x^{2}+7x+6}
|
extreme y=sqrt(3)x+2cos(x)
|
extreme\:y=\sqrt{3}x+2\cos(x)
|
extreme f(x,y)=x^3+y^2-6xy-9x+8y+2
|
extreme\:f(x,y)=x^{3}+y^{2}-6xy-9x+8y+2
|
extreme y=sin(x)+cos(x)
|
extreme\:y=\sin(x)+\cos(x)
|
extreme f(x)=4x^2+40,-1<= x<= 1
|
extreme\:f(x)=4x^{2}+40,-1\le\:x\le\:1
|
extreme f(x)=f(x,y)=xye^{x+2y}
|
extreme\:f(x)=f(x,y)=xye^{x+2y}
|
extreme y=xsqrt(64-x^2)
|
extreme\:y=x\sqrt{64-x^{2}}
|
extreme f(x)= 1/3 x^3+5/2 x^2-24x+2
|
extreme\:f(x)=\frac{1}{3}x^{3}+\frac{5}{2}x^{2}-24x+2
|
extreme f(x)=-3x^2+3xy-2x+y^2+6y+12
|
extreme\:f(x)=-3x^{2}+3xy-2x+y^{2}+6y+12
|
extreme f(x)= x/(16+x^2)
|
extreme\:f(x)=\frac{x}{16+x^{2}}
|
extreme f(x)=4-x
|
extreme\:f(x)=4-x
|
critical points of sin(x)cos(x)
|
critical\:points\:\sin(x)\cos(x)
|
extreme f(x)=-x^3+x^2+x-1
|
extreme\:f(x)=-x^{3}+x^{2}+x-1
|
extreme 2/(1+x^2)
|
extreme\:\frac{2}{1+x^{2}}
|
extreme f(x)=-x^3+x^2+x+6
|
extreme\:f(x)=-x^{3}+x^{2}+x+6
|
extreme f(x)=xy-2x-y
|
extreme\:f(x)=xy-2x-y
|
extreme f(x)=t^4-2t^2+2
|
extreme\:f(x)=t^{4}-2t^{2}+2
|
extreme f(x)=(x+2)^3(x-3)^2
|
extreme\:f(x)=(x+2)^{3}(x-3)^{2}
|
extreme y=(x-1)^2(x+1)
|
extreme\:y=(x-1)^{2}(x+1)
|
extreme f(x)=(x+2)^3(x-3)^3
|
extreme\:f(x)=(x+2)^{3}(x-3)^{3}
|
extreme f(x)=5x^2-20x+5,0<= x<= 3
|
extreme\:f(x)=5x^{2}-20x+5,0\le\:x\le\:3
|
extreme f(x)=x^{2/3}(1/8 x^2+3/5 x-9)
|
extreme\:f(x)=x^{\frac{2}{3}}(\frac{1}{8}x^{2}+\frac{3}{5}x-9)
|
inverse of f(x)=x-(2x+3)/(7x-14)
|
inverse\:f(x)=x-\frac{2x+3}{7x-14}
|
extreme f(x)=5-8x,x>= 1
|
extreme\:f(x)=5-8x,x\ge\:1
|
extreme f(x,y)=6x^2-xy+4y^2
|
extreme\:f(x,y)=6x^{2}-xy+4y^{2}
|
extreme f(x)=(x+5)/(x^2-2x-35)
|
extreme\:f(x)=\frac{x+5}{x^{2}-2x-35}
|
extreme f(x)=(24-2x)(36-2x)x
|
extreme\:f(x)=(24-2x)(36-2x)x
|
extreme f(x)=(2x^2-10)/(x+3)
|
extreme\:f(x)=\frac{2x^{2}-10}{x+3}
|
extreme 3600+118x-15x^2+0.5x^3
|
extreme\:3600+118x-15x^{2}+0.5x^{3}
|
extreme 3x^3+(144)/x
|
extreme\:3x^{3}+\frac{144}{x}
|
extreme (2+x-x^2)/((x-1)^2)
|
extreme\:\frac{2+x-x^{2}}{(x-1)^{2}}
|
extreme y=100x(2x+3)(x-5)
|
extreme\:y=100x(2x+3)(x-5)
|
extreme f(x)=3x^2+2y^2-18x+4y
|
extreme\:f(x)=3x^{2}+2y^{2}-18x+4y
|