extreme ((x^3+9))/((x^2+4))
|
extreme\:\frac{(x^{3}+9)}{(x^{2}+4)}
|
extreme f(x)=(12-2x)(12-2x)x
|
extreme\:f(x)=(12-2x)(12-2x)x
|
extreme f(x)=(5x)/(x^2+25)
|
extreme\:f(x)=\frac{5x}{x^{2}+25}
|
line (1,-3)(-2,4)
|
line\:(1,-3)(-2,4)
|
intercepts of (-3x-9)/(5x+15)
|
intercepts\:\frac{-3x-9}{5x+15}
|
extreme f(x)=-x^3+12x-18
|
extreme\:f(x)=-x^{3}+12x-18
|
extreme y=(x-1)^5
|
extreme\:y=(x-1)^{5}
|
extreme f(x)=-x^3+12x-25
|
extreme\:f(x)=-x^{3}+12x-25
|
extreme f(x)=-x^3+12x-23
|
extreme\:f(x)=-x^{3}+12x-23
|
extreme f(x)= 1/3 x^3+3x^2+5x-11/3
|
extreme\:f(x)=\frac{1}{3}x^{3}+3x^{2}+5x-\frac{11}{3}
|
extreme f(x)=|x|+x^2-5x+6
|
extreme\:f(x)=\left|x\right|+x^{2}-5x+6
|
f(x,y)=60x^{1/3}y^{2/3}
|
f(x,y)=60x^{\frac{1}{3}}y^{\frac{2}{3}}
|
extreme x^2(x^2-2)
|
extreme\:x^{2}(x^{2}-2)
|
extreme f(x)=(x+2)^2(x-3)
|
extreme\:f(x)=(x+2)^{2}(x-3)
|
extreme-3x^3
|
extreme\:-3x^{3}
|
domain of g(x)= x/5
|
domain\:g(x)=\frac{x}{5}
|
extreme y=x^5-5x^4
|
extreme\:y=x^{5}-5x^{4}
|
minimum f(x)=x^3+3x^2,-5/2 <= x<= 1
|
minimum\:f(x)=x^{3}+3x^{2},-\frac{5}{2}\le\:x\le\:1
|
extreme 1/((x+1)(x+2)(x+3))
|
extreme\:\frac{1}{(x+1)(x+2)(x+3)}
|
minimum f(x)=3x^2+10x-5
|
minimum\:f(x)=3x^{2}+10x-5
|
extreme f(x,y)=-x^2-4x-y^2+2y-1
|
extreme\:f(x,y)=-x^{2}-4x-y^{2}+2y-1
|
extreme f(x)=3xsqrt(x-x^2)
|
extreme\:f(x)=3x\sqrt{x-x^{2}}
|
extreme-x^3-x^2
|
extreme\:-x^{3}-x^{2}
|
extreme h(x)=2x^3-24x
|
extreme\:h(x)=2x^{3}-24x
|
extreme y=xsqrt(x^2+1)
|
extreme\:y=x\sqrt{x^{2}+1}
|
inverse of f(x)=-4/5 x-12
|
inverse\:f(x)=-\frac{4}{5}x-12
|
extreme f(x)=4x^2+y^2
|
extreme\:f(x)=4x^{2}+y^{2}
|
extreme f(x)=ln(4x)
|
extreme\:f(x)=\ln(4x)
|
extreme x^3-y^3-2xy+6
|
extreme\:x^{3}-y^{3}-2xy+6
|
extreme f(x)=x^{1/7}(x-8)
|
extreme\:f(x)=x^{\frac{1}{7}}(x-8)
|
extreme f(x,y)=x^3-27xy+27y^3
|
extreme\:f(x,y)=x^{3}-27xy+27y^{3}
|
extreme f(x)=x^2+5x-1
|
extreme\:f(x)=x^{2}+5x-1
|
f(x,y)=x^2+xy+y^2+2y
|
f(x,y)=x^{2}+xy+y^{2}+2y
|
extreme y=-x^4+2x^2
|
extreme\:y=-x^{4}+2x^{2}
|
extreme f(x)=12x^5+30x^4-300x^3+3
|
extreme\:f(x)=12x^{5}+30x^{4}-300x^{3}+3
|
minimum f(x,y)=4x^4+4y^4-2xy
|
minimum\:f(x,y)=4x^{4}+4y^{4}-2xy
|
intercepts of f(x)=(x^2-x-12)/(2x-8)
|
intercepts\:f(x)=\frac{x^{2}-x-12}{2x-8}
|
minimum f(x)=x^{1/x}
|
minimum\:f(x)=x^{\frac{1}{x}}
|
extreme f(x)=(6x^2)/(x^2-9)
|
extreme\:f(x)=\frac{6x^{2}}{x^{2}-9}
|
extreme f(x)=x+(49)/x+5,1<= x<= 98
|
extreme\:f(x)=x+\frac{49}{x}+5,1\le\:x\le\:98
|
extreme f(x)=((x+2))/(x^2-x-6)
|
extreme\:f(x)=\frac{(x+2)}{x^{2}-x-6}
|
extreme g(y)=4-y^2,-2<= y<= 1
|
extreme\:g(y)=4-y^{2},-2\le\:y\le\:1
|
extreme f(x)=((x^2-8))/(x+3)
|
extreme\:f(x)=\frac{(x^{2}-8)}{x+3}
|
extreme y= 3/(-(x-4)^2-1)
|
extreme\:y=\frac{3}{-(x-4)^{2}-1}
|
f(xy)=2x^2+2y^2+4xy-8x+20
|
f(xy)=2x^{2}+2y^{2}+4xy-8x+20
|
critical points of f(x)=(2x+5)/3
|
critical\:points\:f(x)=\frac{2x+5}{3}
|
extreme f(x)=ln(3-ln(x))
|
extreme\:f(x)=\ln(3-\ln(x))
|
extreme f(x)=12x^2-2x^3
|
extreme\:f(x)=12x^{2}-2x^{3}
|
extreme f(x,y)=x^2+y^2-4y+4
|
extreme\:f(x,y)=x^{2}+y^{2}-4y+4
|
extreme f(x)=x^3-29x^2-40x
|
extreme\:f(x)=x^{3}-29x^{2}-40x
|
extreme f(x)=-4x^2-8x-1.5
|
extreme\:f(x)=-4x^{2}-8x-1.5
|
f(x,y)=3x-4xy+5y
|
f(x,y)=3x-4xy+5y
|
extreme f(x)=x^5+243
|
extreme\:f(x)=x^{5}+243
|
extreme f(x)=6-(x^3)/3+15x-x^2
|
extreme\:f(x)=6-\frac{x^{3}}{3}+15x-x^{2}
|
extreme f(x)=3x^2-12x+7,0<= x<= 4
|
extreme\:f(x)=3x^{2}-12x+7,0\le\:x\le\:4
|
extreme (x-1)^3-3x
|
extreme\:(x-1)^{3}-3x
|
asymptotes of f(x)=arctan(x^2+1)
|
asymptotes\:f(x)=\arctan(x^{2}+1)
|
extreme f(x,y)=x^2+xy+y^2-6x
|
extreme\:f(x,y)=x^{2}+xy+y^{2}-6x
|
extreme f(x)=40x^2+(600)/x
|
extreme\:f(x)=40x^{2}+\frac{600}{x}
|
extreme (y^2-x^2)(y-2)
|
extreme\:(y^{2}-x^{2})(y-2)
|
minimum f(x)=2x^3+3x^2-180x
|
minimum\:f(x)=2x^{3}+3x^{2}-180x
|
U(x,y)=xy
|
U(x,y)=xy
|
extreme f(x)=7-(7+5x)^{2/5}
|
extreme\:f(x)=7-(7+5x)^{\frac{2}{5}}
|
extreme f(x)=(x^5)/5-(4x^4)/4+2
|
extreme\:f(x)=\frac{x^{5}}{5}-\frac{4x^{4}}{4}+2
|
extreme f(x)=(x^5)/5-(4x^4)/4+6
|
extreme\:f(x)=\frac{x^{5}}{5}-\frac{4x^{4}}{4}+6
|
f(x,y)=3x^2-4xy+4y^2-4x+8y+4
|
f(x,y)=3x^{2}-4xy+4y^{2}-4x+8y+4
|
extreme 3-sqrt(x)
|
extreme\:3-\sqrt{x}
|
domain of f(x)=cos(2x)
|
domain\:f(x)=\cos(2x)
|
extreme f(x)=2x^3-18x^2+48x-7
|
extreme\:f(x)=2x^{3}-18x^{2}+48x-7
|
extreme x^3+y^3-27x-48y-24
|
extreme\:x^{3}+y^{3}-27x-48y-24
|
extreme f(x)=e^{-x}*(x^2-x+1)
|
extreme\:f(x)=e^{-x}\cdot\:(x^{2}-x+1)
|
extreme f(x)=-2x^2+60x-70
|
extreme\:f(x)=-2x^{2}+60x-70
|
extreme y=(cos(x))/(1+sin^2(x))
|
extreme\:y=\frac{\cos(x)}{1+\sin^{2}(x)}
|
f(x,y)=3x^4+3x^2y-y^3
|
f(x,y)=3x^{4}+3x^{2}y-y^{3}
|
extreme x^2+y^2-2x-2y+3
|
extreme\:x^{2}+y^{2}-2x-2y+3
|
f(t)=5ut(t-2)
|
f(t)=5ut(t-2)
|
extreme f(x)=3x^2-3y^2+6
|
extreme\:f(x)=3x^{2}-3y^{2}+6
|
domain of f(x)= 1/(\sqrt[5]{x-6)}
|
domain\:f(x)=\frac{1}{\sqrt[5]{x-6}}
|
minimum x^2+y^2+4x-2y+6
|
minimum\:x^{2}+y^{2}+4x-2y+6
|
f(x)=8y^3-12xy+x^3
|
f(x)=8y^{3}-12xy+x^{3}
|
extreme f(x)=5xsqrt(16-x^2)
|
extreme\:f(x)=5x\sqrt{16-x^{2}}
|
minimum 3x+7x^{-1}
|
minimum\:3x+7x^{-1}
|
extreme (x^3+1)/(x^2)
|
extreme\:\frac{x^{3}+1}{x^{2}}
|
extreme x^3-9x^2+24x
|
extreme\:x^{3}-9x^{2}+24x
|
extreme f(x,y)=2x^2-4x+y^2-4y+6
|
extreme\:f(x,y)=2x^{2}-4x+y^{2}-4y+6
|
p(x)=2x^3-11x^2+ax-40
|
p(x)=2x^{3}-11x^{2}+ax-40
|
extreme (x^4-98x^2)/8
|
extreme\:\frac{x^{4}-98x^{2}}{8}
|
line (-3/5 ,-11/3)(11/2 , 7/4)
|
line\:(-\frac{3}{5},-\frac{11}{3})(\frac{11}{2},\frac{7}{4})
|
extreme 2xe^{3x}
|
extreme\:2xe^{3x}
|
minimum f(x,y)=1+x^2+xy+y^2
|
minimum\:f(x,y)=1+x^{2}+xy+y^{2}
|
f(x,y)=sqrt(11-x^2-y^2)
|
f(x,y)=\sqrt{11-x^{2}-y^{2}}
|
extreme f(x)=x^2-25
|
extreme\:f(x)=x^{2}-25
|
U(X,Y)=X^{0.3}Y^{0.7}
|
U(X,Y)=X^{0.3}Y^{0.7}
|
extreme f(x)=x^2+(360)/x
|
extreme\:f(x)=x^{2}+\frac{360}{x}
|
extreme f(x)=x^3-6x^2+5,(-3,5)
|
extreme\:f(x)=x^{3}-6x^{2}+5,(-3,5)
|
extreme f(x)=0.25x^4+x^3
|
extreme\:f(x)=0.25x^{4}+x^{3}
|
p(a,b)=(a*e)-2200-0.02*e-b
|
p(a,b)=(a\cdot\:e)-2200-0.02\cdot\:e-b
|
extreme f(x)=2((x^3)/3+x^2)
|
extreme\:f(x)=2(\frac{x^{3}}{3}+x^{2})
|
domain of (1-5x)/(4+x)
|
domain\:\frac{1-5x}{4+x}
|
extreme f(x)= x/(x^2-49)
|
extreme\:f(x)=\frac{x}{x^{2}-49}
|