Upgrade to Pro
Continue to site
Solutions
Graphing
Calculators
New
Geometry
Practice
Notebook
Groups
Cheat Sheets
Sign in
Upgrade
Upgrade
Account Details
Login Options
Account Management
Settings
Subscription
Logout
No new notifications
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Popular Functions & Graphing Problems
domain of p(x)= 1/2 e^x
domain\:p(x)=\frac{1}{2}e^{x}
domain of f(x)=sqrt(x^2-4)+1/(x^2-9)+x
domain\:f(x)=\sqrt{x^{2}-4}+\frac{1}{x^{2}-9}+x
domain of 0.05x+20+(125)/x
domain\:0.05x+20+\frac{125}{x}
global extreme points of (1060-x)^2+x^2
global\:extreme\:points\:(1060-x)^{2}+x^{2}
domain of f(x)=6y-1248
domain\:f(x)=6y-1248
domain of f(x)=(2*x^2)/(x^2-1)
domain\:f(x)=\frac{2\cdot\:x^{2}}{x^{2}-1}
domain of-(11)/((5+t)^2)
domain\:-\frac{11}{(5+t)^{2}}
domain of f(x)=((2-x))/((x+1)^5)
domain\:f(x)=\frac{(2-x)}{(x+1)^{5}}
domain of f(x)=sqrt(x^3-4x^2-12x)
domain\:f(x)=\sqrt{x^{3}-4x^{2}-12x}
domain of e^{0.5x}+16^{-x}
domain\:e^{0.5x}+16^{-x}
domain of-24.708x+111
domain\:-24.708x+111
domain of f(x)=e^{x^2-1}+ln(|x|+1)
domain\:f(x)=e^{x^{2}-1}+\ln(\left|x\right|+1)
slope intercept of x-4y=-4
slope\:intercept\:x-4y=-4
domain of y=-2log_{7}(x+1)
domain\:y=-2\log_{7}(x+1)
domain of (2x^2-9x+10)/(2x^2+7x+6)
domain\:\frac{2x^{2}-9x+10}{2x^{2}+7x+6}
domain of f(x)=sqrt(2x-20)
domain\:f(x)=\sqrt{2x-20}
domain of sqrt(9-y^2)
domain\:\sqrt{9-y^{2}}
domain of 2x^2-4x-30
domain\:2x^{2}-4x-30
domain of-1+(2x-60)/(x^2+2x-63)
domain\:-1+\frac{2x-60}{x^{2}+2x-63}
domain of sin(sqrt(cos(pix)))
domain\:\sin(\sqrt{\cos(πx)})
domain of (2x^2-6x+2)/(x-1)
domain\:\frac{2x^{2}-6x+2}{x-1}
domain of f(x)=(3x)/(x+9)
domain\:f(x)=\frac{3x}{x+9}
domain of y=ln((x+3)(x-4))
domain\:y=\ln((x+3)(x-4))
range of f(x)=-2^x+1
range\:f(x)=-2^{x}+1
domain of ((4x^2))/(x^2-3x-4)
domain\:\frac{(4x^{2})}{x^{2}-3x-4}
domain of log_{5}(11)
domain\:\log_{5}(11)
domain of y=(sin(arccos((2x)/(1+x))))
domain\:y=(\sin(\arccos(\frac{2x}{1+x})))
domain of t(x)=\sqrt[7]{7x-9}
domain\:t(x)=\sqrt[7]{7x-9}
domain of ((2X-1))/2+((X+2))/3
domain\:\frac{(2X-1)}{2}+\frac{(X+2)}{3}
domain of (m+2)/(2m+3)+5/(m-2)
domain\:\frac{m+2}{2m+3}+\frac{5}{m-2}
domain of g(x)=sqrt(5x-40)
domain\:g(x)=\sqrt{5x-40}
domain of y= 1/(log_{10)(x+2)}
domain\:y=\frac{1}{\log_{10}(x+2)}
domain of f(x)=(sqrt(x))/(3x+9)
domain\:f(x)=\frac{\sqrt{x}}{3x+9}
domain of f(x)=x^5-1
domain\:f(x)=x^{5}-1
inverse of f(x)=50x
inverse\:f(x)=50x
domain of sqrt(7-e^{2x)}
domain\:\sqrt{7-e^{2x}}
domain of y=3-|x+1|
domain\:y=3-\left|x+1\right|
domain of 4x^2-4,x>= 0
domain\:4x^{2}-4,x\ge\:0
domain of 2-(10)/(x^2)
domain\:2-\frac{10}{x^{2}}
domain of f(x)=(x-4)/(ln(x-2))
domain\:f(x)=\frac{x-4}{\ln(x-2)}
domain of (a+10)/(a(a-1))-1
domain\:\frac{a+10}{a(a-1)}-1
domain of (-8x-14)/(-8x^2-61x+24)
domain\:\frac{-8x-14}{-8x^{2}-61x+24}
domain of f(x)=-2x^2+60x
domain\:f(x)=-2x^{2}+60x
domain of (x-1)/((x-1)(x+2))
domain\:\frac{x-1}{(x-1)(x+2)}
inverse of 1+(2+x)^{1/2}
inverse\:1+(2+x)^{\frac{1}{2}}
domain of f(x)=-3cos(7/12 pix)+6
domain\:f(x)=-3\cos(\frac{7}{12}πx)+6
domain of sqrt((x-2)/3)+1
domain\:\sqrt{\frac{x-2}{3}}+1
domain of 10x+52
domain\:10x+52
domain of f(x)= 1/(x-2sqrt(x))
domain\:f(x)=\frac{1}{x-2\sqrt{x}}
domain of f(x)=(x^2+9-x)/x
domain\:f(x)=\frac{x^{2}+9-x}{x}
domain of f(x)=(5x+8)/(3x-5)
domain\:f(x)=\frac{5x+8}{3x-5}
domain of f(x)=sqrt((4x^2-9)/(x^2-25))
domain\:f(x)=\sqrt{\frac{4x^{2}-9}{x^{2}-25}}
domain of-x+9sqrt(x)-20
domain\:-x+9\sqrt{x}-20
domain of f(x)=(3-2x)/(3x-2)
domain\:f(x)=\frac{3-2x}{3x-2}
domain of 4^x+3*2^x+1
domain\:4^{x}+3\cdot\:2^{x}+1
domain of f(x)=(x^2)/(2x-7)
domain\:f(x)=\frac{x^{2}}{2x-7}
domain of f(x)= 1/(\sqrt[4]{10+x)}
domain\:f(x)=\frac{1}{\sqrt[4]{10+x}}
domain of (x-8)/(3x-4)
domain\:\frac{x-8}{3x-4}
domain of f(x)=-x^2+6x-4,2<= x<= 7
domain\:f(x)=-x^{2}+6x-4,2\le\:x\le\:7
domain of (3x(x-9))/(6x^2-41x-7)
domain\:\frac{3x(x-9)}{6x^{2}-41x-7}
domain of (x^2+x)/(8x-32)
domain\:\frac{x^{2}+x}{8x-32}
domain of (6x^2+19x+8)/(x^4-98x^2+2401)
domain\:\frac{6x^{2}+19x+8}{x^{4}-98x^{2}+2401}
domain of (9x)/(x^2-25)
domain\:\frac{9x}{x^{2}-25}
domain of 2/5 f(x)(x+3)-2=0
domain\:\frac{2}{5}f(x)(x+3)-2=0
domain of (2x^2+x-28)/(x^2-3x-28)
domain\:\frac{2x^{2}+x-28}{x^{2}-3x-28}
domain of f(x)=5-4x,x<2
domain\:f(x)=5-4x,x<2
asymptotes of f(x)=((x+2))/((x-2))
asymptotes\:f(x)=\frac{(x+2)}{(x-2)}
domain of f(x)=7x^3-6x^2+9
domain\:f(x)=7x^{3}-6x^{2}+9
domain of f(x)= 1/(x-3)-x/(4x-2)
domain\:f(x)=\frac{1}{x-3}-\frac{x}{4x-2}
domain of F(x)= 2/(x^2)
domain\:F(x)=\frac{2}{x^{2}}
domain of f(x)=(3x^2+x-4)/(x-1)
domain\:f(x)=\frac{3x^{2}+x-4}{x-1}
domain of f(x)=(x^2+2)/(sqrt(x-5))
domain\:f(x)=\frac{x^{2}+2}{\sqrt{x-5}}
domain of (x-6)/(x^2-9x+18)
domain\:\frac{x-6}{x^{2}-9x+18}
domain of h(x)=sqrt(8-x)
domain\:h(x)=\sqrt{8-x}
domain of f(x)=((3-2x))/(x-1)
domain\:f(x)=\frac{(3-2x)}{x-1}
domain of f(x)=(-3sqrt(2x))/(25)-2
domain\:f(x)=\frac{-3\sqrt{2x}}{25}-2
domain of y=(sqrt(x-4))/(x+4)
domain\:y=\frac{\sqrt{x-4}}{x+4}
range of |x-4|+7
range\:|x-4|+7
intercepts of-x^2+8x-7
intercepts\:-x^{2}+8x-7
domain of log_{10}(2/3)(x+2)-4
domain\:\log_{10}(\frac{2}{3})(x+2)-4
domain of f(x)=(3x-2)/(x^2+x-12)
domain\:f(x)=\frac{3x-2}{x^{2}+x-12}
domain of f(x)= 8/(x-9)
domain\:f(x)=\frac{8}{x-9}
domain of f(x)=(8x+5)/(2x-5)
domain\:f(x)=\frac{8x+5}{2x-5}
domain of f(x)=-2x^2+12x+4
domain\:f(x)=-2x^{2}+12x+4
domain of 36x+25
domain\:36x+25
domain of f(x)=2x+1,x>= 2
domain\:f(x)=2x+1,x\ge\:2
domain of f(x)=-2x^3-2x
domain\:f(x)=-2x^{3}-2x
domain of f(x)=(x-5)/(x^2-x-20)
domain\:f(x)=\frac{x-5}{x^{2}-x-20}
inverse of f(x)=log_{3}(x^2)
inverse\:f(x)=\log_{3}(x^{2})
domain of f(x)=(x-3)/(sqrt(x-8))
domain\:f(x)=\frac{x-3}{\sqrt{x-8}}
domain of x^4-x^2+x
domain\:x^{4}-x^{2}+x
domain of f(x)=xsqrt(3x-5)
domain\:f(x)=x\sqrt{3x-5}
domain of f(x)=(x^4)/9-2x^2
domain\:f(x)=\frac{x^{4}}{9}-2x^{2}
domain of sqrt((x-1)/(1-x))
domain\:\sqrt{\frac{x-1}{1-x}}
domain of f(x)=arccos((x+3)/8)
domain\:f(x)=\arccos(\frac{x+3}{8})
domain of f(x)=(x+4)/(x^2+5x-14)
domain\:f(x)=\frac{x+4}{x^{2}+5x-14}
domain of ln(-(-5-3x^2)/(x^2+1))
domain\:\ln(-\frac{-5-3x^{2}}{x^{2}+1})
domain of-ln(1-ln(x))
domain\:-\ln(1-\ln(x))
domain of f(x)=(x+5)/(x^2+5x)
domain\:f(x)=\frac{x+5}{x^{2}+5x}
parity (sqrt(1+sin(y)))/(1-sin(y))
parity\:\frac{\sqrt{1+\sin(y)}}{1-\sin(y)}
1
..
308
309
310
311
312
313
314
..
1339
We want your feedback
(optional)
(optional)
Please add a message.
Message received. Thanks for the feedback.
Cancel
Send
Generating PDF...
Feedback