Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
asymptotes of-(1/3)^x
asymptotes\:-(\frac{1}{3})^{x}
domain of f(x)=(2x^3)/(2x+2)
domain\:f(x)=\frac{2x^{3}}{2x+2}
inverse of f(x)=\sqrt[3]{x}+8
inverse\:f(x)=\sqrt[3]{x}+8
parallel y=3x-8
parallel\:y=3x-8
range of f(x)=7x^2+6
range\:f(x)=7x^{2}+6
parity f(x)=-x^4-2x
parity\:f(x)=-x^{4}-2x
extreme x^4-x^2
extreme\:x^{4}-x^{2}
domain of x^2-4x+3
domain\:x^{2}-4x+3
parity y=sec(θ)(θ-tan(θ))
parity\:y=\sec(θ)(θ-\tan(θ))
asymptotes of f(x)= 1/(x+2)-3
asymptotes\:f(x)=\frac{1}{x+2}-3
amplitude of 4sin((2piθ)/5)
amplitude\:4\sin(\frac{2πθ}{5})
parity f(x)=x^3-5x+1
parity\:f(x)=x^{3}-5x+1
asymptotes of x/(\sqrt[3]{x^2-1)}
asymptotes\:\frac{x}{\sqrt[3]{x^{2}-1}}
inflection ln(x^2+1)
inflection\:\ln(x^{2}+1)
domain of f(x)=sqrt(23-x)
domain\:f(x)=\sqrt{23-x}
slope of-1.4735x+91.61
slope\:-1.4735x+91.61
inverse of y=x^{1/2}-2
inverse\:y=x^{\frac{1}{2}}-2
inverse of f(x)=2^{(x+1)}
inverse\:f(x)=2^{(x+1)}
monotone f(x)=x^2+4x
monotone\:f(x)=x^{2}+4x
domain of f(x)=sqrt(2x+4)
domain\:f(x)=\sqrt{2x+4}
inverse of f(x)=(e^x-3)/2
inverse\:f(x)=\frac{e^{x}-3}{2}
domain of (sqrt(1+4x^6))/(2-x^3)
domain\:\frac{\sqrt{1+4x^{6}}}{2-x^{3}}
inverse of f(x)= 2/3 (x-1)^2-3
inverse\:f(x)=\frac{2}{3}(x-1)^{2}-3
domain of f(x)=-2sqrt(x-3)-1
domain\:f(x)=-2\sqrt{x-3}-1
domain of f(x)=140(1.6)^x
domain\:f(x)=140(1.6)^{x}
inflection f(x)=(x+5)^{2/7}
inflection\:f(x)=(x+5)^{\frac{2}{7}}
amplitude of sin(6x)
amplitude\:\sin(6x)
asymptotes of f(x)=(x+6)/(x(x+11))
asymptotes\:f(x)=\frac{x+6}{x(x+11)}
inverse of f(x)=2x^2-8x
inverse\:f(x)=2x^{2}-8x
simplify (1.5)(5.6)
simplify\:(1.5)(5.6)
domain of 5x^3-15x
domain\:5x^{3}-15x
extreme xe^{-2x}
extreme\:xe^{-2x}
intercepts of f(x)=x^3-8x^2+9x+18
intercepts\:f(x)=x^{3}-8x^{2}+9x+18
inverse of f(x)=((3x))/((x-2))
inverse\:f(x)=\frac{(3x)}{(x-2)}
domain of f(x)=sqrt(1-2sin(x))
domain\:f(x)=\sqrt{1-2\sin(x)}
line (0,-3),(6,0)
line\:(0,-3),(6,0)
inverse of f(x)=\sqrt[4]{x+3}+7
inverse\:f(x)=\sqrt[4]{x+3}+7
perpendicular 2x+3
perpendicular\:2x+3
inflection f(x)=x^4-3x^2
inflection\:f(x)=x^{4}-3x^{2}
distance (1,3),(5,6)
distance\:(1,3),(5,6)
domain of f(x)= 6/(6-x)
domain\:f(x)=\frac{6}{6-x}
inverse of f(x)=2x+16
inverse\:f(x)=2x+16
domain of f(x)=(35)/(x(x+7))
domain\:f(x)=\frac{35}{x(x+7)}
domain of (x+4)/(x^2-4)
domain\:\frac{x+4}{x^{2}-4}
extreme f(x)=(1-x)^{1/3}
extreme\:f(x)=(1-x)^{\frac{1}{3}}
range of 4/(t^2-9)
range\:\frac{4}{t^{2}-9}
slope ofintercept x+3y=-6
slopeintercept\:x+3y=-6
midpoint (8,10),(2,6)
midpoint\:(8,10),(2,6)
domain of sqrt((x+2)(x-3))
domain\:\sqrt{(x+2)(x-3)}
domain of f(x)=(x+5)/(x^2+3)
domain\:f(x)=\frac{x+5}{x^{2}+3}
intercepts of f(x)=1
intercepts\:f(x)=1
range of-2x+3
range\:-2x+3
monotone f(x)=-2x^3+3x^2
monotone\:f(x)=-2x^{3}+3x^{2}
inverse of f(x)=8^{x+2}-13
inverse\:f(x)=8^{x+2}-13
intercepts of f(x)=x^2-2x-3
intercepts\:f(x)=x^{2}-2x-3
domain of f(x)= 5/(x-1)
domain\:f(x)=\frac{5}{x-1}
domain of g(x)=(sqrt(4+x))/(8-x)
domain\:g(x)=\frac{\sqrt{4+x}}{8-x}
critical x^3-27x
critical\:x^{3}-27x
inverse of f(x)= x/(x+20)
inverse\:f(x)=\frac{x}{x+20}
domain of f(x)=3^xx-2
domain\:f(x)=3^{x}x-2
domain of f(x)=sqrt(6-t)
domain\:f(x)=\sqrt{6-t}
extreme f(x)=x^3+12x^2+5
extreme\:f(x)=x^{3}+12x^{2}+5
domain of f(x)= 1/(3(sqrt(2x+6))-12)
domain\:f(x)=\frac{1}{3(\sqrt{2x+6})-12}
asymptotes of f(x)=(3x^2)/(x^2-4)
asymptotes\:f(x)=\frac{3x^{2}}{x^{2}-4}
asymptotes of f(x)=(3x+3)/(x+2)
asymptotes\:f(x)=\frac{3x+3}{x+2}
intercepts of f(x)= 4/9 x^3-2x^2
intercepts\:f(x)=\frac{4}{9}x^{3}-2x^{2}
inverse of f(x)= 3/2 x-3
inverse\:f(x)=\frac{3}{2}x-3
midpoint (-4,6),(-5,-7)
midpoint\:(-4,6),(-5,-7)
inverse of f(x)=x^{1/3}+2
inverse\:f(x)=x^{\frac{1}{3}}+2
domain of (5x-4)/(7x+3)
domain\:\frac{5x-4}{7x+3}
simplify (4.3)(6)
simplify\:(4.3)(6)
inverse of f(x)=x+1/3
inverse\:f(x)=x+\frac{1}{3}
slope ofintercept 6x+3y=5.97
slopeintercept\:6x+3y=5.97
asymptotes of f(x)=(x+8)/(x+1)
asymptotes\:f(x)=\frac{x+8}{x+1}
inverse of y=-5x+2
inverse\:y=-5x+2
parity ((2x-2x^4+x^5+1))/((x^3-x^2-1))
parity\:\frac{(2x-2x^{4}+x^{5}+1)}{(x^{3}-x^{2}-1)}
inverse of f(x)=((3+4x))/(2-5x)
inverse\:f(x)=\frac{(3+4x)}{2-5x}
line m= 1/3 ,(3,9)
line\:m=\frac{1}{3},(3,9)
inverse of f(x)=(3-x)/(x+1)
inverse\:f(x)=\frac{3-x}{x+1}
parity ((x^2-3x-2))/((4x^4+5x-4))
parity\:\frac{(x^{2}-3x-2)}{(4x^{4}+5x-4)}
inverse of f(x)=-2x+8
inverse\:f(x)=-2x+8
asymptotes of (x^2-x)/(x^2-4x+3)
asymptotes\:\frac{x^{2}-x}{x^{2}-4x+3}
inflection x^4-2x^2+3
inflection\:x^{4}-2x^{2}+3
perpendicular y=3x-1,(-1,-1)
perpendicular\:y=3x-1,(-1,-1)
domain of f(x)=(x^3)/(sqrt(2-x))
domain\:f(x)=\frac{x^{3}}{\sqrt{2-x}}
critical f(x)=8x^3+x^2+8x
critical\:f(x)=8x^{3}+x^{2}+8x
asymptotes of f(x)= 5/((x-3)^2)
asymptotes\:f(x)=\frac{5}{(x-3)^{2}}
inverse of f(x)= 1/2 x+1
inverse\:f(x)=\frac{1}{2}x+1
domain of ((x^2-4))/(x^3+x^2-4x-4)
domain\:\frac{(x^{2}-4)}{x^{3}+x^{2}-4x-4}
slope ofintercept y=8
slopeintercept\:y=8
intercepts of f(x)=5x^2
intercepts\:f(x)=5x^{2}
inverse of 1+(8+x)^{1/2}
inverse\:1+(8+x)^{\frac{1}{2}}
domain of f(x)=21x^2+32x+12
domain\:f(x)=21x^{2}+32x+12
inverse of f(x)= 1/3 (x-4)^2-2
inverse\:f(x)=\frac{1}{3}(x-4)^{2}-2
range of f(x)=\sqrt[3]{x+8}
range\:f(x)=\sqrt[3]{x+8}
slope of 2(1.2)
slope\:2(1.2)
asymptotes of f(x)=(2x)/x
asymptotes\:f(x)=\frac{2x}{x}
inverse of f(x)=4x+1
inverse\:f(x)=4x+1
parallel 3x-2y=6
parallel\:3x-2y=6
domain of (4/(x+3))*(2x^2)
domain\:(\frac{4}{x+3})\cdot\:(2x^{2})
1
..
307
308
309
310
311
..
1324