inverse of 4x^2+2
|
inverse\:4x^{2}+2
|
domain of f(x)=-x^2+5x-4
|
domain\:f(x)=-x^{2}+5x-4
|
domain of 23^x-1
|
domain\:23^{x}-1
|
domain of f(x)=(1/(t^2))
|
domain\:f(x)=(\frac{1}{t^{2}})
|
domain of sqrt(2-\sqrt{2-x)}
|
domain\:\sqrt{2-\sqrt{2-x}}
|
domain of f(x)=(4x+1)/(2x)
|
domain\:f(x)=\frac{4x+1}{2x}
|
domain of f(x)=sqrt(19x^2+5)
|
domain\:f(x)=\sqrt{19x^{2}+5}
|
domain of 1/((1/x)-1)
|
domain\:\frac{1}{(\frac{1}{x})-1}
|
domain of f(x)=(x^3-x-1)/(x^2+x+1)
|
domain\:f(x)=\frac{x^{3}-x-1}{x^{2}+x+1}
|
domain of f(x)=((9x-4))/(4x-5)
|
domain\:f(x)=\frac{(9x-4)}{4x-5}
|
domain of f(x)= 2/(1-x)
|
domain\:f(x)=\frac{2}{1-x}
|
domain of log_{9}(x^2-16)
|
domain\:\log_{9}(x^{2}-16)
|
midpoint (-5,9)(8,14)
|
midpoint\:(-5,9)(8,14)
|
domain of (2x+1)/(x^2-9)
|
domain\:\frac{2x+1}{x^{2}-9}
|
domain of (3x-8)/(25)
|
domain\:\frac{3x-8}{25}
|
domain of 2(x-2)
|
domain\:2(x-2)
|
domain of f(x)=(7+2x)/(x-1)
|
domain\:f(x)=\frac{7+2x}{x-1}
|
domain of f(x)= 1/(x^2+2x-3)+sqrt(x+4)
|
domain\:f(x)=\frac{1}{x^{2}+2x-3}+\sqrt{x+4}
|
domain of (6+x)/(1-6x)
|
domain\:\frac{6+x}{1-6x}
|
domain of r(x)=(x^2+8x+18)/(2x^2+16x+32)
|
domain\:r(x)=\frac{x^{2}+8x+18}{2x^{2}+16x+32}
|
domain of f(x)=sqrt(36-x^2)-3
|
domain\:f(x)=\sqrt{36-x^{2}}-3
|
domain of 1/(xsqrt(1-x^2))
|
domain\:\frac{1}{x\sqrt{1-x^{2}}}
|
distance (4,-1)(-1,1)
|
distance\:(4,-1)(-1,1)
|
domain of (5-2x)/(4x-1)
|
domain\:\frac{5-2x}{4x-1}
|
domain of f(x)=sqrt(-13-x)
|
domain\:f(x)=\sqrt{-13-x}
|
domain of f(x)=(x+3)/(x^2-6x-27)
|
domain\:f(x)=\frac{x+3}{x^{2}-6x-27}
|
domain of f(x)= 1/(x^2+2x-3)+sqrt(x+2)
|
domain\:f(x)=\frac{1}{x^{2}+2x-3}+\sqrt{x+2}
|
domain of f(x)=-9/50 x+72
|
domain\:f(x)=-\frac{9}{50}x+72
|
domain of ln|2x+1|-sin(3x-2)
|
domain\:\ln\left|2x+1\right|-\sin(3x-2)
|
domain of e^{x-1}+1
|
domain\:e^{x-1}+1
|
domain of 3v^2-75
|
domain\:3v^{2}-75
|
domain of f(x)=sqrt(x-2)x>= 2
|
domain\:f(x)=\sqrt{x-2}x\ge\:2
|
inverse of f(x)= 3/7 x-24
|
inverse\:f(x)=\frac{3}{7}x-24
|
domain of f(x)=0.5(x-6)^2-3
|
domain\:f(x)=0.5(x-6)^{2}-3
|
domain of f(x)=(8x)/(x^2-2x-24)
|
domain\:f(x)=\frac{8x}{x^{2}-2x-24}
|
domain of f(x)=(x^3)/(x-2)
|
domain\:f(x)=\frac{x^{3}}{x-2}
|
domain of sqrt(7)
|
domain\:\sqrt{7}
|
domain of 1-2/x
|
domain\:1-\frac{2}{x}
|
domain of f(x)=0.5(x-6)^2+8
|
domain\:f(x)=0.5(x-6)^{2}+8
|
domain of f(x)=-3-4ln(x-1)
|
domain\:f(x)=-3-4\ln(x-1)
|
domain of f(x)=(10x)/(x+9)
|
domain\:f(x)=\frac{10x}{x+9}
|
extreme points of e^{3x}(2-x)
|
extreme\:points\:e^{3x}(2-x)
|
domain of (x^2)/2+5
|
domain\:\frac{x^{2}}{2}+5
|
domain of f(x)=(sqrt(x-3))/(ln(x-1))
|
domain\:f(x)=\frac{\sqrt{x-3}}{\ln(x-1)}
|
domain of f(x)=(sqrt(x+2))^2-5
|
domain\:f(x)=(\sqrt{x+2})^{2}-5
|
domain of 200-4x
|
domain\:200-4x
|
domain of f(x)=((x5^x))/(5^{(x+2))-6}
|
domain\:f(x)=\frac{(x5^{x})}{5^{(x+2)}-6}
|
domain of x/(ln(x-1)-1)
|
domain\:\frac{x}{\ln(x-1)-1}
|
domain of f(x)=(x+1)/(x^2-9x+8)
|
domain\:f(x)=\frac{x+1}{x^{2}-9x+8}
|
domain of f(x)=-3x^2+sqrt(x)
|
domain\:f(x)=-3x^{2}+\sqrt{x}
|
domain of (x+5)/3
|
domain\:\frac{x+5}{3}
|
domain of f(x)=cos(x-7)+4
|
domain\:f(x)=\cos(x-7)+4
|
parity e^x
|
parity\:e^{x}
|
domain of f(x,y)=ln(x-6)
|
domain\:f(x,y)=\ln(x-6)
|
domain of e^{7x}
|
domain\:e^{7x}
|
domain of f(x,y)=ln(x-5)
|
domain\:f(x,y)=\ln(x-5)
|
domain of f(x)=ln(28-3x-x^2)
|
domain\:f(x)=\ln(28-3x-x^{2})
|
domain of (2x)/(x+4)
|
domain\:\frac{2x}{x+4}
|
domain of 3x^2+6x+15
|
domain\:3x^{2}+6x+15
|
domain of g(x)=(x+9)/(x^2-1)
|
domain\:g(x)=\frac{x+9}{x^{2}-1}
|
domain of f(x)= 4/((x+2)^2)+1
|
domain\:f(x)=\frac{4}{(x+2)^{2}}+1
|
domain of sqrt((x+2)/(x-1))
|
domain\:\sqrt{\frac{x+2}{x-1}}
|
domain of y<= 3x+6
|
domain\:y\le\:3x+6
|
domain of f(x)=(5x)/(2x-1)
|
domain\:f(x)=\frac{5x}{2x-1}
|
domain of f(x)=[1.8]
|
domain\:f(x)=[1.8]
|
domain of f(x)=(2x-4)/(3x-3)
|
domain\:f(x)=\frac{2x-4}{3x-3}
|
domain of (3-8x)/(10+7x)(x)
|
domain\:\frac{3-8x}{10+7x}(x)
|
domain of f(x)=(1/(x+1^2))
|
domain\:f(x)=(\frac{1}{x+1^{2}})
|
domain of f(x)=log_{2}(x^2-x+2)
|
domain\:f(x)=\log_{2}(x^{2}-x+2)
|
domain of f(x)=x^2+3x-10
|
domain\:f(x)=x^{2}+3x-10
|
domain of f(x)=x-2-sqrt(5x-1)
|
domain\:f(x)=x-2-\sqrt{5x-1}
|
domain of 1/(\frac{2x){4x+7}}
|
domain\:\frac{1}{\frac{2x}{4x+7}}
|
domain of f(x)=x^5+sqrt(x)
|
domain\:f(x)=x^{5}+\sqrt{x}
|
intercepts of (2x+1)/(2x-1)
|
intercepts\:\frac{2x+1}{2x-1}
|
domain of 2x^2-6x+15
|
domain\:2x^{2}-6x+15
|
domain of f(x)=(4sqrt(x+2))/(5x-15)
|
domain\:f(x)=\frac{4\sqrt{x+2}}{5x-15}
|
domain of f(x)=(7x+7)/(2x+6)
|
domain\:f(x)=\frac{7x+7}{2x+6}
|
domain of 1/(3x+28)
|
domain\:\frac{1}{3x+28}
|
domain of f(x)=(x-1)^2-1
|
domain\:f(x)=(x-1)^{2}-1
|
domain of (3x+5)/(x-2)
|
domain\:\frac{3x+5}{x-2}
|
domain of f(x)=cos(x)=sin(y)
|
domain\:f(x)=\cos(x)=\sin(y)
|
domain of log_{2}(4x-3)
|
domain\:\log_{2}(4x-3)
|
range of f(x)=(2x)/(x-1)
|
range\:f(x)=\frac{2x}{x-1}
|
domain of f(x)=(4x(x-6))/(2x^2-5x-3)
|
domain\:f(x)=\frac{4x(x-6)}{2x^{2}-5x-3}
|
domain of f(x)=(x-6)/(x^2-1)
|
domain\:f(x)=\frac{x-6}{x^{2}-1}
|
domain of f(x)=(e^8-1)/2
|
domain\:f(x)=\frac{e^{8}-1}{2}
|
domain of 1/3 sqrt(x)
|
domain\:\frac{1}{3}\sqrt{x}
|
domain of (x+7)2
|
domain\:(x+7)2
|
domain of log_{10}((x+6)/(x^2-4))
|
domain\:\log_{10}(\frac{x+6}{x^{2}-4})
|
domain of sqrt(6+x-x^2)
|
domain\:\sqrt{6+x-x^{2}}
|
domain of f(x)=log_{10}(-3x+1)
|
domain\:f(x)=\log_{10}(-3x+1)
|
domain of f(x)=y=xsqrt(x^2)-2
|
domain\:f(x)=y=x\sqrt{x^{2}}-2
|
domain of (5-2x)/(4x-2)
|
domain\:\frac{5-2x}{4x-2}
|
extreme points of f(x)=x-e^x
|
extreme\:points\:f(x)=x-e^{x}
|
domain of f(x)=0x-285000
|
domain\:f(x)=0x-285000
|
domain of y=((x+7)^2)/(sqrt(6x-2))
|
domain\:y=\frac{(x+7)^{2}}{\sqrt{6x-2}}
|
domain of ((x-1)(x+9))/(x^2-9)
|
domain\:\frac{(x-1)(x+9)}{x^{2}-9}
|
domain of f(x)=ln|x-6|
|
domain\:f(x)=\ln\left|x-6\right|
|
domain of f(x)=ln(1+2x^2)
|
domain\:f(x)=\ln(1+2x^{2})
|
domain of (7x)/(3x-1)
|
domain\:\frac{7x}{3x-1}
|