domain of f(x)=-0.8x-1.3
|
domain\:f(x)=-0.8x-1.3
|
domain of f(x)=(x^2+6x-7)/(x^2+2x-3)
|
domain\:f(x)=\frac{x^{2}+6x-7}{x^{2}+2x-3}
|
symmetry y=x^2+2x+1
|
symmetry\:y=x^{2}+2x+1
|
domain of f(x)=(5x+2)/(3x^2-18x+27)
|
domain\:f(x)=\frac{5x+2}{3x^{2}-18x+27}
|
domain of f(x)=(1-sin(x))/(cos(x))
|
domain\:f(x)=\frac{1-\sin(x)}{\cos(x)}
|
domain of y=sqrt(5/(3x-1))
|
domain\:y=\sqrt{\frac{5}{3x-1}}
|
domain of f(x)=(7x)/(5x-9)
|
domain\:f(x)=\frac{7x}{5x-9}
|
domain of ((8x+5))/(4x+2)
|
domain\:\frac{(8x+5)}{4x+2}
|
domain of-sin(2t)+sin(t)
|
domain\:-\sin(2t)+\sin(t)
|
domain of-x^4-x^3+6x^2+4x-8
|
domain\:-x^{4}-x^{3}+6x^{2}+4x-8
|
domain of y=e^{-x}-4
|
domain\:y=e^{-x}-4
|
domain of f(x)=sqrt(x^2-4x-21)
|
domain\:f(x)=\sqrt{x^{2}-4x-21}
|
asymptotes of (x^2-16)/(2x+8)
|
asymptotes\:\frac{x^{2}-16}{2x+8}
|
domain of ln(arctan(x))
|
domain\:\ln(\arctan(x))
|
domain of y=log_{10}(2-6x)
|
domain\:y=\log_{10}(2-6x)
|
domain of f(x)=2^{(x+2)}
|
domain\:f(x)=2^{(x+2)}
|
domain of y=4x^2+2x-5
|
domain\:y=4x^{2}+2x-5
|
domain of v(x)=sqrt(36-9x)
|
domain\:v(x)=\sqrt{36-9x}
|
domain of f(x)=x+5=9
|
domain\:f(x)=x+5=9
|
domain of sqrt(15-x)
|
domain\:\sqrt{15-x}
|
domain of-(ln(x))/(2ln(2))
|
domain\:-\frac{\ln(x)}{2\ln(2)}
|
domain of f(x)=x^2-8x^2+a
|
domain\:f(x)=x^{2}-8x^{2}+a
|
domain of y=(x^2+6x)/(4x^3-23x^2-6x)
|
domain\:y=\frac{x^{2}+6x}{4x^{3}-23x^{2}-6x}
|
slope intercept of y=-4x+7
|
slope\:intercept\:y=-4x+7
|
domain of f(x)=t+8ln(t+4)
|
domain\:f(x)=t+8\ln(t+4)
|
domain of f(x)=y=sqrt(81-x^2)
|
domain\:f(x)=y=\sqrt{81-x^{2}}
|
domain of y=(-9x-26)/(x+3)
|
domain\:y=\frac{-9x-26}{x+3}
|
domain of 3-log_{3}(2-x)
|
domain\:3-\log_{3}(2-x)
|
domain of (5x^2+3)/(3x^2+2)
|
domain\:\frac{5x^{2}+3}{3x^{2}+2}
|
domain of f(x)=x^2-1,-1<= x<0
|
domain\:f(x)=x^{2}-1,-1\le\:x<0
|
domain of f(x)=(5x)/(6x-1)
|
domain\:f(x)=\frac{5x}{6x-1}
|
domain of f(x)=\sqrt[3]{-3x-3}
|
domain\:f(x)=\sqrt[3]{-3x-3}
|
domain of (x^2+5x)/(2x-8)
|
domain\:\frac{x^{2}+5x}{2x-8}
|
domain of 7/(9x-6)+2/3
|
domain\:\frac{7}{9x-6}+\frac{2}{3}
|
domain of f(x)=x^2+6x-8
|
domain\:f(x)=x^{2}+6x-8
|
domain of f(x)=-2-x^2,x<= 0
|
domain\:f(x)=-2-x^{2},x\le\:0
|
domain of f(x)=(x^2-18)/6
|
domain\:f(x)=\frac{x^{2}-18}{6}
|
domain of y=1.25x-3.625
|
domain\:y=1.25x-3.625
|
domain of g(x)=2(x+1)2-3
|
domain\:g(x)=2(x+1)2-3
|
domain of h(x)=(x+2)/3
|
domain\:h(x)=\frac{x+2}{3}
|
domain of f(x)=(sqrt(25-x^2))
|
domain\:f(x)=(\sqrt{25-x^{2}})
|
domain of x+6/x
|
domain\:x+\frac{6}{x}
|
domain of f(x)=-6x^2+8x-10
|
domain\:f(x)=-6x^{2}+8x-10
|
domain of g(x)=2-xsi<1
|
domain\:g(x)=2-xsi<1
|
line (-5.6,-3.4),(-3.5,-4.5)
|
line\:(-5.6,-3.4),(-3.5,-4.5)
|
domain of-1/(sqrt(-5x+4))
|
domain\:-\frac{1}{\sqrt{-5x+4}}
|
domain of f(x)=16000+5t-20t
|
domain\:f(x)=16000+5t-20t
|
domain of 1/(t+2)
|
domain\:\frac{1}{t+2}
|
domain of f(x)=\sqrt[3]{1-1}
|
domain\:f(x)=\sqrt[3]{1-1}
|
domain of f(x)= 3/2 x-3
|
domain\:f(x)=\frac{3}{2}x-3
|
domain of f(x)=log_{10}(1/5)(x^2-x-12)
|
domain\:f(x)=\log_{10}(\frac{1}{5})(x^{2}-x-12)
|
domain of g(z)=3x^2-x+5
|
domain\:g(z)=3x^{2}-x+5
|
domain of f(x)=((6t-1))/(t^2+1)
|
domain\:f(x)=\frac{(6t-1)}{t^{2}+1}
|
domain of f(x)=1+2sec(x)
|
domain\:f(x)=1+2\sec(x)
|
domain of f(x)=(x+8)/(x+3)
|
domain\:f(x)=\frac{x+8}{x+3}
|
domain of sqrt(x-15)
|
domain\:\sqrt{x-15}
|
domain of y=x^2(x^2-5)
|
domain\:y=x^{2}(x^{2}-5)
|
domain of f(x)=-(2x-3)^2+5
|
domain\:f(x)=-(2x-3)^{2}+5
|
domain of f(x)=-x^2+11x
|
domain\:f(x)=-x^{2}+11x
|
domain of (x^2+3x+5)/(x^2-4x+3)
|
domain\:\frac{x^{2}+3x+5}{x^{2}-4x+3}
|
domain of f(x)=(x-6)/(x^2+1)
|
domain\:f(x)=\frac{x-6}{x^{2}+1}
|
domain of f(x)=ln(2x^2)
|
domain\:f(x)=\ln(2x^{2})
|
domain of y=2sec(3x+pi)-1
|
domain\:y=2\sec(3x+π)-1
|
domain of f(x)=(x-1)/(3x+1)
|
domain\:f(x)=\frac{x-1}{3x+1}
|
domain of f(x)=52x-6
|
domain\:f(x)=52x-6
|
domain of f(x)=(x^2)/(x^2-x-12)
|
domain\:f(x)=\frac{x^{2}}{x^{2}-x-12}
|
domain of y=sqrt(|(2x-3)/(2x+3)|-1)
|
domain\:y=\sqrt{\left|\frac{2x-3}{2x+3}\right|-1}
|
domain of (100)/(x^2)-9
|
domain\:\frac{100}{x^{2}}-9
|
domain of r(x)=(x^2+5x)/(25-x^2)
|
domain\:r(x)=\frac{x^{2}+5x}{25-x^{2}}
|
domain of-e^x-6
|
domain\:-e^{x}-6
|
domain of 1-cy
|
domain\:1-cy
|
domain of f(x)=sqrt((x+3)/(x^2-36))
|
domain\:f(x)=\sqrt{\frac{x+3}{x^{2}-36}}
|
domain of f(x)=sqrt(14-x)+sqrt(14+x)
|
domain\:f(x)=\sqrt{14-x}+\sqrt{14+x}
|
domain of (1-9x)/(5x+4)
|
domain\:\frac{1-9x}{5x+4}
|
domain of \sqrt[3]{x^3+5}
|
domain\:\sqrt[3]{x^{3}+5}
|
domain of 2x-17
|
domain\:2x-17
|
domain of f(x)=\sqrt[8]{8-7x}
|
domain\:f(x)=\sqrt[8]{8-7x}
|
domain of f(x)=((6t-1))/(t^2+7)
|
domain\:f(x)=\frac{(6t-1)}{t^{2}+7}
|
domain of f(x)=sqrt(x+1/x)
|
domain\:f(x)=\sqrt{x+\frac{1}{x}}
|
domain of f(x)=log_{2}((x-9)/x)
|
domain\:f(x)=\log_{2}(\frac{x-9}{x})
|
domain of (x-1)/((x-3)(x+1))
|
domain\:\frac{x-1}{(x-3)(x+1)}
|
domain of x^2+6x+12
|
domain\:x^{2}+6x+12
|
domain of y=x^2-7x+3
|
domain\:y=x^{2}-7x+3
|
domain of 5-x,0<x<6
|
domain\:5-x,0<x<6
|
domain of ((x+10))/(x^2-100)
|
domain\:\frac{(x+10)}{x^{2}-100}
|
domain of f(x)= x/(5x-9)
|
domain\:f(x)=\frac{x}{5x-9}
|
slope intercept of x-y=-6
|
slope\:intercept\:x-y=-6
|
domain of f(x)=log_{4}(6x-18)
|
domain\:f(x)=\log_{4}(6x-18)
|
domain of f(x)=(2x^2-ax+1)/(x^2+2x+2)
|
domain\:f(x)=\frac{2x^{2}-ax+1}{x^{2}+2x+2}
|
domain of 5/(x(x-8))
|
domain\:\frac{5}{x(x-8)}
|
domain of f(x)=(x+2)^2*(x-2)^2*(x-3)^2=0
|
domain\:f(x)=(x+2)^{2}\cdot\:(x-2)^{2}\cdot\:(x-3)^{2}=0
|
domain of f(x)=cos(x+pi/4)
|
domain\:f(x)=\cos(x+\frac{π}{4})
|
domain of f(x)=(x^2-2x+4)/(x-2)
|
domain\:f(x)=\frac{x^{2}-2x+4}{x-2}
|
domain of-sqrt((e^{x-3)+1)/2}
|
domain\:-\sqrt{\frac{e^{x-3}+1}{2}}
|
domain of y=ln((x-sqrt(x^2-4))/2)
|
domain\:y=\ln(\frac{x-\sqrt{x^{2}-4}}{2})
|
domain of sqrt(x^2+x-12)
|
domain\:\sqrt{x^{2}+x-12}
|
periodicity of sin(x+(3pi)/2)
|
periodicity\:\sin(x+\frac{3\pi}{2})
|
inverse of f(x)=((2x+3))/(x-8)
|
inverse\:f(x)=\frac{(2x+3)}{x-8}
|
domain of-5/(sqrt(x+4))
|
domain\:-\frac{5}{\sqrt{x+4}}
|
domain of f(x)=1x^2+4x-9
|
domain\:f(x)=1x^{2}+4x-9
|