domain of f(x)=(t^2+7)/t
|
domain\:f(x)=\frac{t^{2}+7}{t}
|
shift f(x)=2sin(pi x-3pi)-4
|
shift\:f(x)=2\sin(\pi\:x-3\pi)-4
|
domain of f(x)=(3x-2)/(x+6)
|
domain\:f(x)=\frac{3x-2}{x+6}
|
domain of f(x)=2-2ln(x)
|
domain\:f(x)=2-2\ln(x)
|
domain of 1/((x+5)^2)
|
domain\:\frac{1}{(x+5)^{2}}
|
domain of sqrt(2(x-2)+10)
|
domain\:\sqrt{2(x-2)+10}
|
domain of (13)/(-3x+14)
|
domain\:\frac{13}{-3x+14}
|
domain of f(x)=(3x-2)/(x+5)
|
domain\:f(x)=\frac{3x-2}{x+5}
|
domain of (3x^2+8x+4)/(3x^2-4x-4)
|
domain\:\frac{3x^{2}+8x+4}{3x^{2}-4x-4}
|
domain of f(x)=(4x)/(sqrt(x+7))
|
domain\:f(x)=\frac{4x}{\sqrt{x+7}}
|
domain of y= 1/(3x+6)
|
domain\:y=\frac{1}{3x+6}
|
range of y=(x^2)/(x^2-4)
|
range\:y=\frac{x^{2}}{x^{2}-4}
|
domain of-1/2 x^2
|
domain\:-\frac{1}{2}x^{2}
|
domain of f(x)=sqrt(x^2+8x+15)
|
domain\:f(x)=\sqrt{x^{2}+8x+15}
|
domain of (297*x)/(512)
|
domain\:\frac{297\cdot\:x}{512}
|
domain of f(x)=ln(0.5-x)
|
domain\:f(x)=\ln(0.5-x)
|
domain of 5/(x^2-4)
|
domain\:\frac{5}{x^{2}-4}
|
domain of f(x)=log_{10}(3x-4)+9
|
domain\:f(x)=\log_{10}(3x-4)+9
|
domain of 10^{10-3x-1}-1
|
domain\:10^{10-3x-1}-1
|
domain of f(x)=2x^5
|
domain\:f(x)=2x^{5}
|
domain of (2x-3)/(x^2+4x+3)
|
domain\:\frac{2x-3}{x^{2}+4x+3}
|
domain of f(x)=((x^2+x))/(x^2-7x+10)
|
domain\:f(x)=\frac{(x^{2}+x)}{x^{2}-7x+10}
|
line 4x+3x-12=0
|
line\:4x+3x-12=0
|
domain of f(x)=2x^2-y+3=0
|
domain\:f(x)=2x^{2}-y+3=0
|
domain of f(x)= 1/(sqrt(x^2-2))
|
domain\:f(x)=\frac{1}{\sqrt{x^{2}-2}}
|
domain of 1/(sqrt(e^{2x))}
|
domain\:\frac{1}{\sqrt{e^{2x}}}
|
domain of f(r)=pir(90-r^2)
|
domain\:f(r)=πr(90-r^{2})
|
domain of f(x)=sqrt((2|x|+3)/(x^2+1))
|
domain\:f(x)=\sqrt{\frac{2\left|x\right|+3}{x^{2}+1}}
|
domain of f(x)=2*x-1/(2*sqrt(x))
|
domain\:f(x)=2\cdot\:x-\frac{1}{2\cdot\:\sqrt{x}}
|
domain of y<= sqrt(x-1)-4
|
domain\:y\le\:\sqrt{x-1}-4
|
domain of f(x)=-7^x
|
domain\:f(x)=-7^{x}
|
domain of f(x)=(2x+1)/(x-4)
|
domain\:f(x)=\frac{2x+1}{x-4}
|
slope of 5x+y=3
|
slope\:5x+y=3
|
domain of f(x)= 5/((x^2-36))
|
domain\:f(x)=\frac{5}{(x^{2}-36)}
|
domain of 0.024x^2-1.5253x+59.1064
|
domain\:0.024x^{2}-1.5253x+59.1064
|
domain of sqrt(2)x+5
|
domain\:\sqrt{2}x+5
|
domain of log_{4}(2x+20)
|
domain\:\log_{4}(2x+20)
|
domain of (x^2+6x+9)/(x^2+12x+27)
|
domain\:\frac{x^{2}+6x+9}{x^{2}+12x+27}
|
domain of f(x)=sqrt(x-5)-(x+1)/(x-10)
|
domain\:f(x)=\sqrt{x-5}-\frac{x+1}{x-10}
|
domain of f(x)=7^{-x}
|
domain\:f(x)=7^{-x}
|
domain of f(x)=3x^{x-2}
|
domain\:f(x)=3x^{x-2}
|
domain of f(x)=ln((-1)/(x-2))
|
domain\:f(x)=\ln(\frac{-1}{x-2})
|
domain of x^3-125
|
domain\:x^{3}-125
|
extreme points of f(x)=T(x)=(x-4)3+6
|
extreme\:points\:f(x)=T(x)=(x-4)3+6
|
domain of f(x)=c+(ln(x))^2
|
domain\:f(x)=c+(\ln(x))^{2}
|
domain of f(t)=(sqrt(t-1))
|
domain\:f(t)=(\sqrt{t-1})
|
domain of f(x)=log_{10}(-5x+2)
|
domain\:f(x)=\log_{10}(-5x+2)
|
domain of (ln(2t+1))/t
|
domain\:\frac{\ln(2t+1)}{t}
|
domain of f(x)=2900
|
domain\:f(x)=2900
|
domain of y=sqrt(x+4)+5x^2-2x
|
domain\:y=\sqrt{x+4}+5x^{2}-2x
|
domain of f(x)=x^4-4x^3-2x^2+12x+9
|
domain\:f(x)=x^{4}-4x^{3}-2x^{2}+12x+9
|
domain of f(x)=sqrt(x),x>= 0
|
domain\:f(x)=\sqrt{x},x\ge\:0
|
domain of f(x)= 5/(x^2-3x-10)
|
domain\:f(x)=\frac{5}{x^{2}-3x-10}
|
domain of f(x)=(sqrt(2x))/(7x-2)
|
domain\:f(x)=\frac{\sqrt{2x}}{7x-2}
|
parity f(x)=x^4-2x^2+6
|
parity\:f(x)=x^{4}-2x^{2}+6
|
domain of f(y)=-sqrt(X+3)+1
|
domain\:f(y)=-\sqrt{X+3}+1
|
domain of f(x)=((x^4))/(x^4-1)
|
domain\:f(x)=\frac{(x^{4})}{x^{4}-1}
|
domain of f(x)=y= 2/3+x
|
domain\:f(x)=y=\frac{2}{3}+x
|
domain of f(x)=(x/(x-8))/(3/(x+9))
|
domain\:f(x)=\frac{\frac{x}{x-8}}{\frac{3}{x+9}}
|
domain of f(x)=(13x)/(11-sqrt(9x-22))
|
domain\:f(x)=\frac{13x}{11-\sqrt{9x-22}}
|
domain of (x+6)/(x-2)
|
domain\:\frac{x+6}{x-2}
|
domain of h(x)=2ln(6-2x)+2x
|
domain\:h(x)=2\ln(6-2x)+2x
|
domain of f(x)=(x-3)/(sqrt(x)-4)
|
domain\:f(x)=\frac{x-3}{\sqrt{x}-4}
|
domain of (sqrt(19-x))/(x-8)+ln(3x+48)
|
domain\:\frac{\sqrt{19-x}}{x-8}+\ln(3x+48)
|
domain of (11x+2x^2)-(-7-3x^2+4)
|
domain\:(11x+2x^{2})-(-7-3x^{2}+4)
|
domain of (21)/((x+4)x)
|
domain\:\frac{21}{(x+4)x}
|
domain of f(x)=2e^{-x^2-x^2}+2cos(x)+3
|
domain\:f(x)=2e^{-x^{2}-x^{2}}+2\cos(x)+3
|
domain of (w^2+w-12)/(w^2-81)
|
domain\:\frac{w^{2}+w-12}{w^{2}-81}
|
domain of 1/(sqrt(x+3)+2)
|
domain\:\frac{1}{\sqrt{x+3}+2}
|
domain of f(x)=(sqrt(2x^2-x+1))/(x-1)
|
domain\:f(x)=\frac{\sqrt{2x^{2}-x+1}}{x-1}
|
domain of (2x)/(10x+1)
|
domain\:\frac{2x}{10x+1}
|
domain of y=(4/5)^x
|
domain\:y=(\frac{4}{5})^{x}
|
domain of (x+6)/(x-6)
|
domain\:\frac{x+6}{x-6}
|
domain of f(x)=ln(5x-x^2)
|
domain\:f(x)=\ln(5x-x^{2})
|
domain of f(x)=-e^{1/5 x}
|
domain\:f(x)=-e^{\frac{1}{5}x}
|
domain of f(x)=(x^2+4x)/(5x^2+36x+64)
|
domain\:f(x)=\frac{x^{2}+4x}{5x^{2}+36x+64}
|
domain of f(x)=x^2+2x+6
|
domain\:f(x)=x^{2}+2x+6
|
domain of f(x)=x^2+2x+9
|
domain\:f(x)=x^{2}+2x+9
|
domain of y= x/(x-2)+sqrt(x-1)
|
domain\:y=\frac{x}{x-2}+\sqrt{x-1}
|
domain of f(y)=-sqrt(3y-2)
|
domain\:f(y)=-\sqrt{3y-2}
|
domain of sqrt(2x+20)
|
domain\:\sqrt{2x+20}
|
domain of f(x)=sqrt(18-2x^2)
|
domain\:f(x)=\sqrt{18-2x^{2}}
|
domain of (sqrt(2x-5))(sqrt(9-x))
|
domain\:(\sqrt{2x-5})(\sqrt{9-x})
|
domain of x^2-4,x<=-2
|
domain\:x^{2}-4,x\le\:-2
|
parallel y=-2x+7,\at (4,1)
|
parallel\:y=-2x+7,\at\:(4,1)
|
domain of y=-2x+4
|
domain\:y=-2x+4
|
domain of y=-2x+2
|
domain\:y=-2x+2
|
domain of y=-2x+3
|
domain\:y=-2x+3
|
domain of (3x^3-8x-3)/(x-3)
|
domain\:\frac{3x^{3}-8x-3}{x-3}
|
domain of f(x)=(x^2e^x)/(|x|)
|
domain\:f(x)=\frac{x^{2}e^{x}}{\left|x\right|}
|
domain of 10-9v
|
domain\:10-9v
|
domain of sqrt(x+7)+sqrt(x-7)
|
domain\:\sqrt{x+7}+\sqrt{x-7}
|
domain of f(x)= 1/(sqrt(t+1))
|
domain\:f(x)=\frac{1}{\sqrt{t+1}}
|
domain of f(x)=(-7)/2 (5)^{x-2}+1
|
domain\:f(x)=\frac{-7}{2}(5)^{x-2}+1
|
parallel 2x-3y=9,\at (3,0)
|
parallel\:2x-3y=9,\at\:(3,0)
|
range of f(x)=(12x)/(3x+4)
|
range\:f(x)=\frac{12x}{3x+4}
|
domain of f(x)=(-x^2-2x+20)/(x+5)
|
domain\:f(x)=\frac{-x^{2}-2x+20}{x+5}
|
domain of ((4x^2+28x+40))/(x+5)
|
domain\:\frac{(4x^{2}+28x+40)}{x+5}
|
domain of f(x)=(-20)/(x-8)
|
domain\:f(x)=\frac{-20}{x-8}
|
domain of y= 2/(\frac{13){x}+3}
|
domain\:y=\frac{2}{\frac{13}{x}+3}
|