domain of f(x)=(6x-x^2)/(x^2+4x-12)
|
domain\:f(x)=\frac{6x-x^{2}}{x^{2}+4x-12}
|
domain of ((x-1)(x+4))/((x+1)(x-5))
|
domain\:\frac{(x-1)(x+4)}{(x+1)(x-5)}
|
domain of y= 1/(1-sin(x))
|
domain\:y=\frac{1}{1-\sin(x)}
|
domain of 1.5x^2-x+3.7
|
domain\:1.5x^{2}-x+3.7
|
domain of f(x)= 1/(x*sqrt(1-x^2))
|
domain\:f(x)=\frac{1}{x\cdot\:\sqrt{1-x^{2}}}
|
domain of f(x)=(5x-3)/(sqrt(36-x^2))
|
domain\:f(x)=\frac{5x-3}{\sqrt{36-x^{2}}}
|
domain of f(x)=((sqrt(x^2-9)))/(x+4)
|
domain\:f(x)=\frac{(\sqrt{x^{2}-9})}{x+4}
|
domain of y=-5sqrt(-3x-15)-6
|
domain\:y=-5\sqrt{-3x-15}-6
|
domain of f(x)=x^2+10x+2
|
domain\:f(x)=x^{2}+10x+2
|
domain of f(x)=x^2+10x+6
|
domain\:f(x)=x^{2}+10x+6
|
domain of f(x)=-2(4)cos(6^2x+pi/4)-2
|
domain\:f(x)=-2(4)\cos(6^{2}x+\frac{π}{4})-2
|
domain of x/(sqrt(2x-8))
|
domain\:\frac{x}{\sqrt{2x-8}}
|
domain of-log_{10}(3x-7)+6
|
domain\:-\log_{10}(3x-7)+6
|
domain of-log_{10}(3x-7)+7
|
domain\:-\log_{10}(3x-7)+7
|
domain of f(x)= x/(x^2-[x])
|
domain\:f(x)=\frac{x}{x^{2}-[x]}
|
y=e^{-x}
|
y=e^{-x}
|
domain of 12x+7
|
domain\:12x+7
|
domain of f(x)=log_{10}(3/((x-3)))
|
domain\:f(x)=\log_{10}(\frac{3}{(x-3)})
|
domain of 6/([ 1/3 (x+|x|)])
|
domain\:\frac{6}{[\frac{1}{3}(x+\left|x\right|)]}
|
domain of (3x+|x|)/x
|
domain\:\frac{3x+\left|x\right|}{x}
|
domain of f(x)=(5/(x+8))/(9/x)
|
domain\:f(x)=\frac{\frac{5}{x+8}}{\frac{9}{x}}
|
domain of f(x)=((2x)/((x+4)(x-9)))
|
domain\:f(x)=(\frac{2x}{(x+4)(x-9)})
|
domain of f(x)=csc((2pi)/7)x-2
|
domain\:f(x)=\csc(\frac{2π}{7})x-2
|
domain of f(x)=2x^e
|
domain\:f(x)=2x^{e}
|
domain of f(x)= 5/((x+1))
|
domain\:f(x)=\frac{5}{(x+1)}
|
domain of f(x)=3^{(x+1)/(x-2)}
|
domain\:f(x)=3^{\frac{x+1}{x-2}}
|
domain of (5x-8)/(5x)
|
domain\:\frac{5x-8}{5x}
|
domain of f(x)=x*|x|
|
domain\:f(x)=x\cdot\:\left|x\right|
|
domain of f(x)=2+1/(x^2)
|
domain\:f(x)=2+\frac{1}{x^{2}}
|
domain of y=log_{2}(6x^2+6x-36)
|
domain\:y=\log_{2}(6x^{2}+6x-36)
|
domain of f(x)= 5/(13x+2)
|
domain\:f(x)=\frac{5}{13x+2}
|
domain of log_{6}(((w-7))/((w+3)))
|
domain\:\log_{6}(\frac{(w-7)}{(w+3)})
|
domain of f(x)=arccos((x-1)/2)
|
domain\:f(x)=\arccos(\frac{x-1}{2})
|
domain of f(x)=((x-3))/(x^2+7x+6)
|
domain\:f(x)=\frac{(x-3)}{x^{2}+7x+6}
|
domain of f(x)=log_{-3}(x)
|
domain\:f(x)=\log_{-3}(x)
|
domain of 3cos(4x)
|
domain\:3\cos(4x)
|
domain of f(x)=x^3-1+sqrt(x+1)
|
domain\:f(x)=x^{3}-1+\sqrt{x+1}
|
critical points of f(x)=x^2+10
|
critical\:points\:f(x)=x^{2}+10
|
domain of f(x)=9(x+3)^2+4(y-5)2=36
|
domain\:f(x)=9(x+3)^{2}+4(y-5)2=36
|
domain of f(x)=sqrt(x-5)+sqrt(x+3)
|
domain\:f(x)=\sqrt{x-5}+\sqrt{x+3}
|
domain of 1/3 ln(x)+6
|
domain\:\frac{1}{3}\ln(x)+6
|
domain of (x^4+3x+x^2+1)/x
|
domain\:\frac{x^{4}+3x+x^{2}+1}{x}
|
domain of f(x)=2(y-5)^2+8
|
domain\:f(x)=2(y-5)^{2}+8
|
domain of f(x)=3x+1,0<x<5
|
domain\:f(x)=3x+1,0<x<5
|
domain of y=sqrt((x-8)/(-5))
|
domain\:y=\sqrt{\frac{x-8}{-5}}
|
domain of (-4x^2+3x)(3x-5)
|
domain\:(-4x^{2}+3x)(3x-5)
|
domain of 4-2|x|
|
domain\:4-2\left|x\right|
|
midpoint (7,5)(3,2)
|
midpoint\:(7,5)(3,2)
|
domain of 2pir^2+2pirh
|
domain\:2πr^{2}+2πrh
|
domain of (6x-18)/(x^2+5x)
|
domain\:\frac{6x-18}{x^{2}+5x}
|
domain of f(x)=-sqrt(a-x)
|
domain\:f(x)=-\sqrt{a-x}
|
domain of f(x)= 1/5 x+c
|
domain\:f(x)=\frac{1}{5}x+c
|
domain of 10-2x
|
domain\:10-2x
|
domain of f(x)=(ln(2x-1))/((x+3)(x-5))
|
domain\:f(x)=\frac{\ln(2x-1)}{(x+3)(x-5)}
|
domain of f(x)=(5x^2)/((x-4)^2)
|
domain\:f(x)=\frac{5x^{2}}{(x-4)^{2}}
|
domain of f(x)= 1/(tan(2x)-(sqrt(3))/3)
|
domain\:f(x)=\frac{1}{\tan(2x)-\frac{\sqrt{3}}{3}}
|
domain of (x+4)^4
|
domain\:(x+4)^{4}
|
domain of sqrt(3-4x)
|
domain\:\sqrt{3-4x}
|
domain of 2+2,x>2
|
domain\:2+2,x>2
|
domain of f(x)=ln((x-2)/(x+3))
|
domain\:f(x)=\ln(\frac{x-2}{x+3})
|
domain of tan(x+2)
|
domain\:\tan(x+2)
|
domain of f(x)=sqrt(8-3x)-(x-4)
|
domain\:f(x)=\sqrt{8-3x}-(x-4)
|
domain of (x/(x+6))/(x/(x+6)+6)
|
domain\:\frac{\frac{x}{x+6}}{\frac{x}{x+6}+6}
|
domain of f(x)=-(2x-2)^2+3
|
domain\:f(x)=-(2x-2)^{2}+3
|
domain of (sqrt(x))/(x^2-4)
|
domain\:\frac{\sqrt{x}}{x^{2}-4}
|
domain of f(x)= 3/(x^2)-3x
|
domain\:f(x)=\frac{3}{x^{2}}-3x
|
domain of f(x)=sqrt(4-x/2)
|
domain\:f(x)=\sqrt{4-\frac{x}{2}}
|
domain of f(x)=(x-4)/(7-x)
|
domain\:f(x)=\frac{x-4}{7-x}
|
parity f(x)=((x^2+1))/((x-1))
|
parity\:f(x)=\frac{(x^{2}+1)}{(x-1)}
|
domain of ,y=-9x^2
|
domain\:,y=-9x^{2}
|
domain of f(x)=(sqrt(x-3))/(x-1)
|
domain\:f(x)=\frac{\sqrt{x-3}}{x-1}
|
domain of f(x)=-2x^2+8x-7
|
domain\:f(x)=-2x^{2}+8x-7
|
domain of (x-3)/(4-x^2)
|
domain\:\frac{x-3}{4-x^{2}}
|
domain of f(x)=(sqrt(x-3))/(x-4)
|
domain\:f(x)=\frac{\sqrt{x-3}}{x-4}
|
domain of f(x)=((x+5))/(x^2-25)
|
domain\:f(x)=\frac{(x+5)}{x^{2}-25}
|
domain of f(x)=(sqrt(1+x)-sqrt(1-x))/x
|
domain\:f(x)=\frac{\sqrt{1+x}-\sqrt{1-x}}{x}
|
domain of sqrt(30-x)
|
domain\:\sqrt{30-x}
|
domain of f(x)=-2x^2+8x+9
|
domain\:f(x)=-2x^{2}+8x+9
|
domain of y=(7x-8)/(6x+5)
|
domain\:y=\frac{7x-8}{6x+5}
|
periodicity of f(x)=-10csc(x)
|
periodicity\:f(x)=-10\csc(x)
|
domain of (4X-12)/((X-2)^2)
|
domain\:\frac{4X-12}{(X-2)^{2}}
|
domain of x^2sqrt(4-x)
|
domain\:x^{2}\sqrt{4-x}
|
domain of-2xsqrt(x-3)
|
domain\:-2x\sqrt{x-3}
|
domain of f(x)=(6x-1)/(sqrt(x)-1)
|
domain\:f(x)=\frac{6x-1}{\sqrt{x}-1}
|
domain of log_{1/3}([(2x-6)(1-9x)])
|
domain\:\log_{\frac{1}{3}}([(2x-6)(1-9x)])
|
domain of f(x)=sqrt(3x-12)+6/(x-3)
|
domain\:f(x)=\sqrt{3x-12}+\frac{6}{x-3}
|
domain of f(x)=(-2x-5)/(3x+18)
|
domain\:f(x)=\frac{-2x-5}{3x+18}
|
domain of 0.2x^2+sqrt(5-x)
|
domain\:0.2x^{2}+\sqrt{5-x}
|
domain of f(x)=-x^3
|
domain\:f(x)=-x^{3}
|
domain of f(x)=7^{x-20}-40
|
domain\:f(x)=7^{x-20}-40
|
domain of f(x,y)= 1/(x^2+1)
|
domain\:f(x,y)=\frac{1}{x^{2}+1}
|
domain of ((1/(28-x)))/(sqrt(x+29))
|
domain\:\frac{(\frac{1}{28-x})}{\sqrt{x+29}}
|
domain of y=(5x)/(x^2-1)
|
domain\:y=\frac{5x}{x^{2}-1}
|
domain of f(x)= 1/16 (y-1)^2
|
domain\:f(x)=\frac{1}{16}(y-1)^{2}
|
domain of f(x)=(900x)/(10-45x)
|
domain\:f(x)=\frac{900x}{10-45x}
|
domain of f(x)=((x-5))/x
|
domain\:f(x)=\frac{(x-5)}{x}
|
domain of f(x)=(3x^2)/(x^2-16)
|
domain\:f(x)=\frac{3x^{2}}{x^{2}-16}
|
domain of x^2-3x+2/(x^2+x-6)
|
domain\:x^{2}-3x+\frac{2}{x^{2}+x-6}
|
domain of (x-1)/(x^2+10x+9)
|
domain\:\frac{x-1}{x^{2}+10x+9}
|
midpoint (-3,-8)(-7,2)
|
midpoint\:(-3,-8)(-7,2)
|