Upgrade to Pro
Continue to site
Solutions
Graphing
Calculators
New
Geometry
Practice
Notebook
Groups
Cheat Sheets
Sign in
Upgrade
Upgrade
Account Details
Login Options
Account Management
Settings
Subscription
Logout
No new notifications
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Popular Functions & Graphing Problems
domain of f(x)=(2x+4)/(x^2+7x+10)
domain\:f(x)=\frac{2x+4}{x^{2}+7x+10}
domain of f(x)=sqrt(4-2x)+5
domain\:f(x)=\sqrt{4-2x}+5
domain of y=2x+5/2
domain\:y=2x+\frac{5}{2}
domain of 1/(x^2-16)
domain\:\frac{1}{x^{2}-16}
slope intercept of 3x+6y=42
slope\:intercept\:3x+6y=42
domain of f(x)=(x-4)2+5
domain\:f(x)=(x-4)2+5
domain of f(t)=sqrt(-t)
domain\:f(t)=\sqrt{-t}
domain of x^4+x
domain\:x^{4}+x
domain of f(x)=2-5log_{10}(8-x)
domain\:f(x)=2-5\log_{10}(8-x)
domain of (2x^3+2x)/(x^2-1)
domain\:\frac{2x^{3}+2x}{x^{2}-1}
domain of f(x)=(2x+9)/(x^2-36x)
domain\:f(x)=\frac{2x+9}{x^{2}-36x}
domain of f(x)=x^2y-4y+x=0
domain\:f(x)=x^{2}y-4y+x=0
domain of f(x)=sqrt(2x-1)-1/x
domain\:f(x)=\sqrt{2x-1}-\frac{1}{x}
domain of f(x)=5-sqrt(2x-1)
domain\:f(x)=5-\sqrt{2x-1}
domain of f(x)=(x-4)/(sqrt(8-x)-2)
domain\:f(x)=\frac{x-4}{\sqrt{8-x}-2}
domain of-3/(2t^{(3/2))}
domain\:-\frac{3}{2t^{(\frac{3}{2})}}
domain of f(x)=(2x)/(3x+1)
domain\:f(x)=\frac{2x}{3x+1}
domain of f(x)=|x+5|
domain\:f(x)=\left|x+5\right|
domain of f(x)=(x+5)/(x^2-x-6)
domain\:f(x)=\frac{x+5}{x^{2}-x-6}
domain of f(x)=2.5x+3.5
domain\:f(x)=2.5x+3.5
domain of f(x)=sqrt(\sqrt{x-2)-1}
domain\:f(x)=\sqrt{\sqrt{x-2}-1}
domain of f(x)=196pix
domain\:f(x)=196πx
domain of f(x)=-2x+230
domain\:f(x)=-2x+230
inverse of f(x)=1-e^{-x^2 1/18}
inverse\:f(x)=1-e^{-x^{2}\frac{1}{18}}
slope intercept of 6x-15y=135
slope\:intercept\:6x-15y=135
domain of g(x)= 6/(x^2-4x)
domain\:g(x)=\frac{6}{x^{2}-4x}
domain of f(x)=x^3-x^2-x+1
domain\:f(x)=x^{3}-x^{2}-x+1
domain of 2sqrt(x+4)-3
domain\:2\sqrt{x+4}-3
domain of log_{10}(2x)-12
domain\:\log_{10}(2x)-12
domain of f(x)=sqrt(7)
domain\:f(x)=\sqrt{7}
domain of f(x)=(x+1)^2(x-2)(x-3)
domain\:f(x)=(x+1)^{2}(x-2)(x-3)
domain of f(x)=-3x^2+x
domain\:f(x)=-3x^{2}+x
domain of-3sqrt(x+2)+5
domain\:-3\sqrt{x+2}+5
asymptotes of f(x)=(x^2-x+8)/(x-3)
asymptotes\:f(x)=\frac{x^{2}-x+8}{x-3}
domain of-6+1/x
domain\:-6+\frac{1}{x}
domain of (x^2+5x+4)/(x^2+15x+56)
domain\:\frac{x^{2}+5x+4}{x^{2}+15x+56}
domain of t^3
domain\:t^{3}
domain of (x+7)/3
domain\:\frac{x+7}{3}
domain of f(x)=log_{x}(4-x^2)
domain\:f(x)=\log_{x}(4-x^{2})
domain of f(x)=log_{2}(x^2+64)
domain\:f(x)=\log_{2}(x^{2}+64)
domain of y=(-3)/(5x+20)+7
domain\:y=\frac{-3}{5x+20}+7
domain of f(x)=sqrt(1-(x-1)^2)
domain\:f(x)=\sqrt{1-(x-1)^{2}}
domain of f(x)=(-1)/(x-1)
domain\:f(x)=\frac{-1}{x-1}
domain of f(x)=ln(x)-e^x-x
domain\:f(x)=\ln(x)-e^{x}-x
inflection points of y=((x^3))/(x^2-9)
inflection\:points\:y=\frac{(x^{3})}{x^{2}-9}
domain of (sqrt(x+1))/(sqrt(2-x))
domain\:\frac{\sqrt{x+1}}{\sqrt{2-x}}
domain of f(x)=log_{x}(x-2)
domain\:f(x)=\log_{x}(x-2)
domain of f(x)=(x^2-5)/2
domain\:f(x)=\frac{x^{2}-5}{2}
domain of f(x)=\sqrt[3]{x-1}+sqrt(2x-4)
domain\:f(x)=\sqrt[3]{x-1}+\sqrt{2x-4}
domain of f(x)=3^{2-x}+1
domain\:f(x)=3^{2-x}+1
domain of f(x)=sqrt((x-5)/(x^2+1))
domain\:f(x)=\sqrt{\frac{x-5}{x^{2}+1}}
domain of f(x)=\sqrt[3]{5x+1}
domain\:f(x)=\sqrt[3]{5x+1}
domain of (x-6)/(2(x-3)sqrt(x-3))
domain\:\frac{x-6}{2(x-3)\sqrt{x-3}}
domain of 1/6 x^3-4
domain\:\frac{1}{6}x^{3}-4
asymptotes of f(x)=((3x+6)(x-1))/((x+5))
asymptotes\:f(x)=\frac{(3x+6)(x-1)}{(x+5)}
domain of y=(sqrt(9-x^2))/(x^2-x)
domain\:y=\frac{\sqrt{9-x^{2}}}{x^{2}-x}
domain of 3/(x+4)
domain\:\frac{3}{x+4}
domain of 2/((y+2)(y-1))
domain\:\frac{2}{(y+2)(y-1)}
domain of f(x)=(sqrt(x)-2)/(sqrt(x)-4)
domain\:f(x)=\frac{\sqrt{x}-2}{\sqrt{x}-4}
domain of (3sqrt(2x-4))/(sqrt(2x-4)-2)
domain\:\frac{3\sqrt{2x-4}}{\sqrt{2x-4}-2}
domain of f(x,)=ln(x)
domain\:f(x,)=\ln(x)
domain of y=e^{2x}
domain\:y=e^{2x}
domain of f(x)=(sqrt(x+8))/(2x+4)
domain\:f(x)=\frac{\sqrt{x+8}}{2x+4}
domain of f(x)=sqrt(-5x-10)+6
domain\:f(x)=\sqrt{-5x-10}+6
critical points of x^3-11x^2+39x-47
critical\:points\:x^{3}-11x^{2}+39x-47
domain of v(x)=sqrt(9-x)
domain\:v(x)=\sqrt{9-x}
domain of f(x)=ln(e^{|x^2+2x+1|}-e)
domain\:f(x)=\ln(e^{\left|x^{2}+2x+1\right|}-e)
domain of h(x)=sqrt((x^2-4)/2)
domain\:h(x)=\sqrt{\frac{x^{2}-4}{2}}
domain of f(x)=(4x)/(sqrt(x^2+1))
domain\:f(x)=\frac{4x}{\sqrt{x^{2}+1}}
domain of x^4-8x^2+17
domain\:x^{4}-8x^{2}+17
domain of f(x)=sqrt(5-2x)+2
domain\:f(x)=\sqrt{5-2x}+2
domain of log_{10}(|x-1|)
domain\:\log_{10}(\left|x-1\right|)
domain of (x)(e^{(5-x)/4})
domain\:(x)(e^{\frac{5-x}{4}})
domain of (5x-8)/(2x+3)
domain\:\frac{5x-8}{2x+3}
domain of h(x)=((x-2))/((3x+4))
domain\:h(x)=\frac{(x-2)}{(3x+4)}
slope of 8y-3x+6=0
slope\:8y-3x+6=0
domain of sqrt(x^2-100)
domain\:\sqrt{x^{2}-100}
domain of f(x)=(-4)/x+1
domain\:f(x)=\frac{-4}{x}+1
domain of 3/(x-2)+4
domain\:\frac{3}{x-2}+4
domain of f(x)=(3x-2)/(x^2-4)
domain\:f(x)=\frac{3x-2}{x^{2}-4}
domain of 36x^2-2x^3
domain\:36x^{2}-2x^{3}
domain of f(x)= 1/(-x^2+2x)
domain\:f(x)=\frac{1}{-x^{2}+2x}
domain of f(x)=(2x+3)/(x+1)
domain\:f(x)=\frac{2x+3}{x+1}
domain of f(x)= 1/2 (3)^x
domain\:f(x)=\frac{1}{2}(3)^{x}
domain of f(x)=10+3x^2
domain\:f(x)=10+3x^{2}
asymptotes of (6x)/(36-x^2)
asymptotes\:\frac{6x}{36-x^{2}}
domain of f(x)= 2/(9x+4)
domain\:f(x)=\frac{2}{9x+4}
domain of f(x)=(x+5)^2+4
domain\:f(x)=(x+5)^{2}+4
domain of f(x)=(2x^2+3x-5)/(x^2+2)
domain\:f(x)=\frac{2x^{2}+3x-5}{x^{2}+2}
domain of f(x)=sqrt(3-2*1/(x-2))
domain\:f(x)=\sqrt{3-2\cdot\:\frac{1}{x-2}}
domain of f(t)=sqrt(4-2t)
domain\:f(t)=\sqrt{4-2t}
domain of x/(x^2-5x-6)
domain\:\frac{x}{x^{2}-5x-6}
domain of f(x)= x/(sqrt(x)+1)
domain\:f(x)=\frac{x}{\sqrt{x}+1}
domain of y=3x-1
domain\:y=3x-1
domain of f(x)=x-5x^3-x^2-2x
domain\:f(x)=x-5x^{3}-x^{2}-2x
domain of f(x)=log_{3}(3x-6)
domain\:f(x)=\log_{3}(3x-6)
range of 1/((x+2e)(x-sqrt(3)))
range\:\frac{1}{(x+2e)(x-\sqrt{3})}
domain of 0.2x+45
domain\:0.2x+45
domain of (x^3-x)/(x^4+4x^3+3x^2-4x-4)
domain\:\frac{x^{3}-x}{x^{4}+4x^{3}+3x^{2}-4x-4}
domain of h(x)=(tan(x))
domain\:h(x)=(\tan(x))
1
..
251
252
253
254
255
256
257
..
1339
We want your feedback
(optional)
(optional)
Please add a message.
Message received. Thanks for the feedback.
Cancel
Send
Generating PDF...
Feedback