domain of y=(1+x)/(x^2-4)
|
domain\:y=\frac{1+x}{x^{2}-4}
|
domain of f(x)=sqrt(4)(x+1)2+x-3x+1-49
|
domain\:f(x)=\sqrt{4}(x+1)2+x-3x+1-49
|
domain of f(x)=sqrt(-x+3)+3
|
domain\:f(x)=\sqrt{-x+3}+3
|
domain of f(x)=(3x^2+1)/(x^2-1)
|
domain\:f(x)=\frac{3x^{2}+1}{x^{2}-1}
|
slope of 4/9
|
slope\:\frac{4}{9}
|
domain of f(x)=3sqrt(2/(x+5))
|
domain\:f(x)=3\sqrt{\frac{2}{x+5}}
|
domain of sqrt(x-1)*sqrt(x-4)
|
domain\:\sqrt{x-1}\cdot\:\sqrt{x-4}
|
domain of f(x)=(x-2)/(3-x)
|
domain\:f(x)=\frac{x-2}{3-x}
|
domain of f(x)=(x-6)/(x^2-4x-21)
|
domain\:f(x)=\frac{x-6}{x^{2}-4x-21}
|
domain of f(x)=arcsin(log_{10}(x))
|
domain\:f(x)=\arcsin(\log_{10}(x))
|
domain of f(x)=(sqrt(x^2-36))/(2x-8)
|
domain\:f(x)=\frac{\sqrt{x^{2}-36}}{2x-8}
|
domain of f(x)=2e^{-x}
|
domain\:f(x)=2e^{-x}
|
domain of h(x)= x/(x+8)
|
domain\:h(x)=\frac{x}{x+8}
|
domain of 5(1/2)^x-8
|
domain\:5(\frac{1}{2})^{x}-8
|
domain of f(x)= 7/(4x^2+2)
|
domain\:f(x)=\frac{7}{4x^{2}+2}
|
distance (-1,8)(4,-2)
|
distance\:(-1,8)(4,-2)
|
perpendicular y= 1/8 x+2,(1,-5)
|
perpendicular\:y=\frac{1}{8}x+2,(1,-5)
|
critical points of x-e^x
|
critical\:points\:x-e^{x}
|
domain of (x+5)/(x^2-x-30)
|
domain\:\frac{x+5}{x^{2}-x-30}
|
domain of f(x)= x/(1-2x)
|
domain\:f(x)=\frac{x}{1-2x}
|
domain of y=(x-7)/(x^2-12x+35)
|
domain\:y=\frac{x-7}{x^{2}-12x+35}
|
domain of f(x)=(2/5)^x
|
domain\:f(x)=(\frac{2}{5})^{x}
|
domain of f(x)=ln(x)-2
|
domain\:f(x)=\ln(x)-2
|
domain of (x+6)/7
|
domain\:\frac{x+6}{7}
|
domain of 1-sqrt(x+4)
|
domain\:1-\sqrt{x+4}
|
domain of f(x)=(x^2-8x+12)/(x+3)
|
domain\:f(x)=\frac{x^{2}-8x+12}{x+3}
|
domain of x^2+11
|
domain\:x^{2}+11
|
critical points of x/(x^2+4)
|
critical\:points\:\frac{x}{x^{2}+4}
|
domain of y= 1/(3x+1)
|
domain\:y=\frac{1}{3x+1}
|
domain of f(x)= 1/((sqrt(-x+4)))
|
domain\:f(x)=\frac{1}{(\sqrt{-x+4})}
|
domain of (3k+2)e^{-3k}
|
domain\:(3k+2)e^{-3k}
|
domain of x^2-9,x>= 0
|
domain\:x^{2}-9,x\ge\:0
|
domain of (8x-9)/(9x+5)
|
domain\:\frac{8x-9}{9x+5}
|
domain of f(x)=ln(0.5-y)
|
domain\:f(x)=\ln(0.5-y)
|
domain of x/(sqrt(x-5))
|
domain\:\frac{x}{\sqrt{x-5}}
|
domain of f(x)=-1/(x(4+ln(x))^2)
|
domain\:f(x)=-\frac{1}{x(4+\ln(x))^{2}}
|
domain of f(x)=(2x+1)/(x-5)
|
domain\:f(x)=\frac{2x+1}{x-5}
|
domain of f(x)= 1/(sqrt((x+2)(x-2)))
|
domain\:f(x)=\frac{1}{\sqrt{(x+2)(x-2)}}
|
parity-cos(x)
|
parity\:-\cos(x)
|
domain of e^{4x+3}+2
|
domain\:e^{4x+3}+2
|
domain of f(x)=-x-1,x<0
|
domain\:f(x)=-x-1,x<0
|
domain of sqrt(x^2+2x+1)
|
domain\:\sqrt{x^{2}+2x+1}
|
domain of f(x)=-2sqrt(x+1)-3
|
domain\:f(x)=-2\sqrt{x+1}-3
|
domain of (3x^5-20x^3)/(32)
|
domain\:\frac{3x^{5}-20x^{3}}{32}
|
domain of x/((x^2+4)^{3/2)}
|
domain\:\frac{x}{(x^{2}+4)^{\frac{3}{2}}}
|
domain of (x^2+1+x)/(x^2+1+2x)
|
domain\:\frac{x^{2}+1+x}{x^{2}+1+2x}
|
domain of y=-2x-1
|
domain\:y=-2x-1
|
domain of 1/(sqrt(x^2+6x+9))
|
domain\:\frac{1}{\sqrt{x^{2}+6x+9}}
|
domain of y=-2x-2
|
domain\:y=-2x-2
|
range of-9/(2x^{3/2)}
|
range\:-\frac{9}{2x^{\frac{3}{2}}}
|
domain of f(x)=5xsix<= 5
|
domain\:f(x)=5xsix\le\:5
|
domain of f(x)=(x-7)^2+(y-1)^2=4
|
domain\:f(x)=(x-7)^{2}+(y-1)^{2}=4
|
domain of t^2-4t+2
|
domain\:t^{2}-4t+2
|
domain of 5x^2e^{-x}
|
domain\:5x^{2}e^{-x}
|
domain of x^3-12x
|
domain\:x^{3}-12x
|
domain of (-12)/(2n-9)
|
domain\:\frac{-12}{2n-9}
|
domain of (3-x)/2
|
domain\:\frac{3-x}{2}
|
domain of f(x)=x^2-6x+6
|
domain\:f(x)=x^{2}-6x+6
|
domain of y=log_{10}(1-4x)
|
domain\:y=\log_{10}(1-4x)
|
domain of 1/2 cos(4x)
|
domain\:\frac{1}{2}\cos(4x)
|
domain of f(x)=sqrt(2-x)+5/(sqrt(x+4))
|
domain\:f(x)=\sqrt{2-x}+\frac{5}{\sqrt{x+4}}
|
domain of f(x)=x^5-2x^4+3x^2-5x+1
|
domain\:f(x)=x^{5}-2x^{4}+3x^{2}-5x+1
|
domain of f(x)=(-3)/2 (4)^{x-3}-1
|
domain\:f(x)=\frac{-3}{2}(4)^{x-3}-1
|
domain of (3x^2)/(x^2-1)
|
domain\:\frac{3x^{2}}{x^{2}-1}
|
domain of f(x)=yx^2-4y-x^2=0
|
domain\:f(x)=yx^{2}-4y-x^{2}=0
|
domain of f(x)=x+1,-2<= x<= 5
|
domain\:f(x)=x+1,-2\le\:x\le\:5
|
domain of f(x)=-2x^2+8x-1
|
domain\:f(x)=-2x^{2}+8x-1
|
slope of y=14x+1
|
slope\:y=14x+1
|
domain of 1/(x^6)
|
domain\:\frac{1}{x^{6}}
|
domain of f(x)=1sqrt(x+0)-4
|
domain\:f(x)=1\sqrt{x+0}-4
|
domain of (x^2-4)/(2x+4)
|
domain\:\frac{x^{2}-4}{2x+4}
|
domain of f(x)=(3x^2-8)/(x^2-4)
|
domain\:f(x)=\frac{3x^{2}-8}{x^{2}-4}
|
domain of (x+6)/x
|
domain\:\frac{x+6}{x}
|
domain of f(x)=x^4+2x^2-1
|
domain\:f(x)=x^{4}+2x^{2}-1
|
domain of f(x)= 3/(x^2-2)
|
domain\:f(x)=\frac{3}{x^{2}-2}
|
domain of (cos(x))^{4/3}
|
domain\:(\cos(x))^{\frac{4}{3}}
|
domain of f(x)=x^2-8x+40
|
domain\:f(x)=x^{2}-8x+40
|
extreme points of f(x)=x^3-7x^2+2
|
extreme\:points\:f(x)=x^{3}-7x^{2}+2
|
domain of x^2-64
|
domain\:x^{2}-64
|
domain of f(t)=ln(9-t^2)
|
domain\:f(t)=\ln(9-t^{2})
|
domain of f(x)=x^2-8x+10
|
domain\:f(x)=x^{2}-8x+10
|
domain of f(x)=2x^{-2}
|
domain\:f(x)=2x^{-2}
|
domain of (1-6x)/(3+x)
|
domain\:\frac{1-6x}{3+x}
|
domain of f(t)=2-14t
|
domain\:f(t)=2-14t
|
domain of f(x)=sqrt((x-7)/(x-8))
|
domain\:f(x)=\sqrt{\frac{x-7}{x-8}}
|
domain of f(x)=(x+4)/3
|
domain\:f(x)=\frac{x+4}{3}
|
domain of f(x)=(2x)/(x^2+3)
|
domain\:f(x)=\frac{2x}{x^{2}+3}
|
domain of f(r)=2pir^2+8pir
|
domain\:f(r)=2πr^{2}+8πr
|
intercepts of f(x)=x^4-25
|
intercepts\:f(x)=x^{4}-25
|
domain of (sqrt(3))/(t-6)
|
domain\:\frac{\sqrt{3}}{t-6}
|
domain of f(x)=(x^2+3)x+3
|
domain\:f(x)=(x^{2}+3)x+3
|
domain of f(x)=e^{-11x}
|
domain\:f(x)=e^{-11x}
|
domain of ,4-x,x<1,8x-5,x>= 1
|
domain\:,4-x,x<1,8x-5,x\ge\:1
|
domain of f(x)=|x-3|-2
|
domain\:f(x)=\left|x-3\right|-2
|
domain of f(x)=2^{x+2}-4
|
domain\:f(x)=2^{x+2}-4
|
domain of f(x)=ln(7-2x)
|
domain\:f(x)=\ln(7-2x)
|
domain of f(x)=|x-3|+2
|
domain\:f(x)=\left|x-3\right|+2
|
domain of f(x)=|x-3|+1
|
domain\:f(x)=\left|x-3\right|+1
|
range of f(x)=(-1)/(x^2-2x+1)
|
range\:f(x)=\frac{-1}{x^{2}-2x+1}
|
domain of x^2+(3-x)/2
|
domain\:x^{2}+\frac{3-x}{2}
|