inverse of 11x
|
inverse\:11x
|
inverse of (10000)/(100+900e^{-t)}
|
inverse\:\frac{10000}{100+900e^{-t}}
|
inverse of g(x)=2sqrt(3x-1)
|
inverse\:g(x)=2\sqrt{3x-1}
|
inverse of 10^2
|
inverse\:10^{2}
|
inverse of 35(3)^{2835}
|
inverse\:35(3)^{2835}
|
inverse of 36log_{6}(5)
|
inverse\:36\log_{6}(5)
|
inverse of y=(5x-2)/(4x+3)
|
inverse\:y=\frac{5x-2}{4x+3}
|
inverse of 3/4 x^{4/3}-3/8 x^{2/3}+9=y
|
inverse\:\frac{3}{4}x^{\frac{4}{3}}-\frac{3}{8}x^{\frac{2}{3}}+9=y
|
range of x^3-x+1
|
range\:x^{3}-x+1
|
inverse of f(x)=(-5x+1)/(5x-2)
|
inverse\:f(x)=\frac{-5x+1}{5x-2}
|
inverse of f(x)=log_{7}(x-1)
|
inverse\:f(x)=\log_{7}(x-1)
|
inverse of 2+1/(x^2-3x)
|
inverse\:2+\frac{1}{x^{2}-3x}
|
inverse of 12x
|
inverse\:12x
|
inverse of f(x)=9x^2+1
|
inverse\:f(x)=9x^{2}+1
|
inverse of f(x)=9x^2+8
|
inverse\:f(x)=9x^{2}+8
|
inverse of f(x)=\sqrt[3]{8-x}+7
|
inverse\:f(x)=\sqrt[3]{8-x}+7
|
inverse of f(x)=9x^2+7
|
inverse\:f(x)=9x^{2}+7
|
inverse of f(x)=x^6+16
|
inverse\:f(x)=x^{6}+16
|
inverse of f(x)=(x-2)/(4x+9)
|
inverse\:f(x)=\frac{x-2}{4x+9}
|
domain of f(x)=(x+1)/(x-2)
|
domain\:f(x)=\frac{x+1}{x-2}
|
inverse of f(x)=19*x-53
|
inverse\:f(x)=19\cdot\:x-53
|
inverse of f(x)=2x^{(3)}-1
|
inverse\:f(x)=2x^{(3)}-1
|
inverse of 8x+sqrt(9x^2+1)+1
|
inverse\:8x+\sqrt{9x^{2}+1}+1
|
inverse of 11x^3-10
|
inverse\:11x^{3}-10
|
inverse of 1/(0.1+j^{0.4)}
|
inverse\:\frac{1}{0.1+j^{0.4}}
|
inverse of f(x)=\sqrt[3]{8-x}+9
|
inverse\:f(x)=\sqrt[3]{8-x}+9
|
inverse of 6/(2-4sin(θ))
|
inverse\:\frac{6}{2-4\sin(θ)}
|
inverse of (x^2-x-12)/(x^2-9)
|
inverse\:\frac{x^{2}-x-12}{x^{2}-9}
|
inverse of f(x)=x^{-1/2}
|
inverse\:f(x)=x^{-\frac{1}{2}}
|
inverse of sqrt(x+7)-1
|
inverse\:\sqrt{x+7}-1
|
inverse of y= 6/(x^2+1)
|
inverse\:y=\frac{6}{x^{2}+1}
|
inverse of y=(5x^3-2)/(x^3+1)
|
inverse\:y=\frac{5x^{3}-2}{x^{3}+1}
|
inverse of f(x)=-x^2-3x+4
|
inverse\:f(x)=-x^{2}-3x+4
|
inverse of 100-x^2
|
inverse\:100-x^{2}
|
inverse of-1/3 (x-2)^2-4
|
inverse\:-\frac{1}{3}(x-2)^{2}-4
|
inverse of f(x)=sqrt(2x+4)-1
|
inverse\:f(x)=\sqrt{2x+4}-1
|
inverse of f(x)=(x+3)4
|
inverse\:f(x)=(x+3)4
|
inverse of f(x)= 7/(3x-2)
|
inverse\:f(x)=\frac{7}{3x-2}
|
inverse of 1-2
|
inverse\:1-2
|
inverse of 1/2 log_{10}(3x)
|
inverse\:\frac{1}{2}\log_{10}(3x)
|
inverse of f(x)<= (x-5)/3
|
inverse\:f(x)\le\:\frac{x-5}{3}
|
inflection points of f(x)=4sin(x)+sin(2x),[0,2pi]
|
inflection\:points\:f(x)=4\sin(x)+\sin(2x),[0,2\pi]
|
inverse of f(x)=2(x-1)^2+4
|
inverse\:f(x)=2(x-1)^{2}+4
|
inverse of f(x)=sqrt(4-x)+10
|
inverse\:f(x)=\sqrt{4-x}+10
|
inverse of f(x)=2^{1/x},x>0
|
inverse\:f(x)=2^{\frac{1}{x}},x>0
|
inverse of f(x)=2(x-1)^2-4
|
inverse\:f(x)=2(x-1)^{2}-4
|
inverse of (x+3)^2-4
|
inverse\:(x+3)^{2}-4
|
inverse of 1.1
|
inverse\:1.1
|
inverse of 1.4
|
inverse\:1.4
|
inverse of 8cos(pi^2x-pi^4)-3
|
inverse\:8\cos(π^{2}x-π^{4})-3
|
inverse of f(x)=(x+5)^{7/3}
|
inverse\:f(x)=(x+5)^{\frac{7}{3}}
|
inverse of f(x)=((x+5))/((x+13))
|
inverse\:f(x)=\frac{(x+5)}{(x+13)}
|
domain of (((ln(x-1)))/(x-1))
|
domain\:(\frac{(\ln(x-1))}{x-1})
|
inverse of f(x)=123*x+18\mod 256
|
inverse\:f(x)=123\cdot\:x+18\mod\:256
|
inverse of f(x)=(1/3)x
|
inverse\:f(x)=(\frac{1}{3})x
|
inverse of f(x)=3^{sqrt(x-3)}
|
inverse\:f(x)=3^{\sqrt{x-3}}
|
inverse of x^4+3
|
inverse\:x^{4}+3
|
inverse of f(x)=sqrt(5+x)+4sqrt(2x+1)
|
inverse\:f(x)=\sqrt{5+x}+4\sqrt{2x+1}
|
inverse of f(x)=2-e^{(-1/3 y)}
|
inverse\:f(x)=2-e^{(-\frac{1}{3}y)}
|
inverse of f(x)=sqrt(x+5)-8
|
inverse\:f(x)=\sqrt{x+5}-8
|
inverse of f(x)=y= 5/(x-3)+6
|
inverse\:f(x)=y=\frac{5}{x-3}+6
|
inverse of y=(3x-4)/(2-x)
|
inverse\:y=\frac{3x-4}{2-x}
|
inverse of f(x)=6x^2-12x+1
|
inverse\:f(x)=6x^{2}-12x+1
|
inverse of f(x)=3(x+8)^7-7
|
inverse\:f(x)=3(x+8)^{7}-7
|
inverse of f(x)= 8/(2x-1)
|
inverse\:f(x)=\frac{8}{2x-1}
|
inverse of f(x)=sqrt(5-x)+2
|
inverse\:f(x)=\sqrt{5-x}+2
|
inverse of y=-6/5 x+6
|
inverse\:y=-\frac{6}{5}x+6
|
inverse of 5cos(9x)+8
|
inverse\:5\cos(9x)+8
|
inverse of f(x)=(-3x-2)/(4-3x)
|
inverse\:f(x)=\frac{-3x-2}{4-3x}
|
inverse of f(x)=(5x-2)/(3x-4)
|
inverse\:f(x)=\frac{5x-2}{3x-4}
|
inverse of f(x)=0.5(4)^x
|
inverse\:f(x)=0.5(4)^{x}
|
inverse of (200)/x
|
inverse\:\frac{200}{x}
|
inverse of (x-1)/(6*x*(x-1)*(x-2))
|
inverse\:\frac{x-1}{6\cdot\:x\cdot\:(x-1)\cdot\:(x-2)}
|
slope of 3,-4
|
slope\:3,-4
|
inverse of f(x)=x^4+5,x>= 0
|
inverse\:f(x)=x^{4}+5,x\ge\:0
|
inverse of f(x)=(8-6x)/(3-4x)
|
inverse\:f(x)=\frac{8-6x}{3-4x}
|
inverse of y=(e^x)/((e^x+1))
|
inverse\:y=\frac{e^{x}}{(e^{x}+1)}
|
inverse of f(x)=0.01327x+0.5747
|
inverse\:f(x)=0.01327x+0.5747
|
inverse of f(t)=12.8-4t
|
inverse\:f(t)=12.8-4t
|
inverse of f(x)=(4x+3)/(5x-5)
|
inverse\:f(x)=\frac{4x+3}{5x-5}
|
inverse of f(x)=(9x+7)/(8x-3)
|
inverse\:f(x)=\frac{9x+7}{8x-3}
|
inverse of w/(2+w)
|
inverse\:\frac{w}{2+w}
|
inverse of 1/(sqrt(x-2))
|
inverse\:\frac{1}{\sqrt{x-2}}
|
inverse of f(x)= 24/6
|
inverse\:f(x)=\frac{24}{6}
|
midpoint (-4,-3)(6,5)
|
midpoint\:(-4,-3)(6,5)
|
inverse of f(x)=x+(4.23)/(8195*x)
|
inverse\:f(x)=x+\frac{4.23}{8195\cdot\:x}
|
inverse of (x-5)/5
|
inverse\:\frac{x-5}{5}
|
inverse of (-2+x)/(x-1)
|
inverse\:\frac{-2+x}{x-1}
|
inverse of f(x)=((1+3x))/((3-7x))
|
inverse\:f(x)=\frac{(1+3x)}{(3-7x)}
|
inverse of 3/(x+9)
|
inverse\:\frac{3}{x+9}
|
inverse of 2x^4
|
inverse\:2x^{4}
|
inverse of f(x)=4^{log_{4}(3)}
|
inverse\:f(x)=4^{\log_{4}(3)}
|
inverse of 3/(x+8)
|
inverse\:\frac{3}{x+8}
|
inverse of f(x)=(7\sqrt[5]{x}-3)/8
|
inverse\:f(x)=\frac{7\sqrt[5]{x}-3}{8}
|
inverse of-sqrt(-(x+7))*sqrt(-(x-1))
|
inverse\:-\sqrt{-(x+7)}\cdot\:\sqrt{-(x-1)}
|
critical points of f(x)=-3x+12
|
critical\:points\:f(x)=-3x+12
|
inverse of y=2sqrt(x-6)+4
|
inverse\:y=2\sqrt{x-6}+4
|
inverse of 1+cos(x)
|
inverse\:1+\cos(x)
|
inverse of f(x)=(4x-6)/(-x+4)
|
inverse\:f(x)=\frac{4x-6}{-x+4}
|
inverse of f(x)=(2x-7)^2-9
|
inverse\:f(x)=(2x-7)^{2}-9
|