inverse of f(x)=0.2log_{7}(3x+2)-9
|
inverse\:f(x)=0.2\log_{7}(3x+2)-9
|
range of (x^2-1)/(x^2+1)
|
range\:\frac{x^{2}-1}{x^{2}+1}
|
inverse of 7/(4^3sqrt(x^2))
|
inverse\:\frac{7}{4^{3}\sqrt{x^{2}}}
|
inverse of (8-5x)/(3+2x)
|
inverse\:\frac{8-5x}{3+2x}
|
inverse of f(x)=1+2ln(x+3)
|
inverse\:f(x)=1+2\ln(x+3)
|
inverse of f(x)=4^{x-1}+1
|
inverse\:f(x)=4^{x-1}+1
|
inverse of f(x)=5x^4-5
|
inverse\:f(x)=5x^{4}-5
|
inverse of f(x)=e^{5x+3}+5
|
inverse\:f(x)=e^{5x+3}+5
|
inverse of f(x)=2 1/((x+2))+4
|
inverse\:f(x)=2\frac{1}{(x+2)}+4
|
inverse of g(x)= x/(10)+2
|
inverse\:g(x)=\frac{x}{10}+2
|
inverse of f(x)=((x-9))/2
|
inverse\:f(x)=\frac{(x-9)}{2}
|
inverse of f(x)=(100y-1)/y
|
inverse\:f(x)=\frac{100y-1}{y}
|
inverse of f(x)=-24csc^3(2x)
|
inverse\:f(x)=-24\csc^{3}(2x)
|
inverse of f(x)= 5/3 x+1
|
inverse\:f(x)=\frac{5}{3}x+1
|
inverse of y=sqrt(64-(x+5.5)^2)-2
|
inverse\:y=\sqrt{64-(x+5.5)^{2}}-2
|
inverse of (5x)/(9x-7)
|
inverse\:\frac{5x}{9x-7}
|
inverse of-1/21
|
inverse\:-\frac{1}{21}
|
inverse of 1/((s^2+1)s^2)
|
inverse\:\frac{1}{(s^{2}+1)s^{2}}
|
inverse of (5x)/(9x-4)
|
inverse\:\frac{5x}{9x-4}
|
inverse of f(x)=x^2-6x,-1<x<3
|
inverse\:f(x)=x^{2}-6x,-1<x<3
|
inverse of log_{10}(y)=5^x
|
inverse\:\log_{10}(y)=5^{x}
|
midpoint (6,3),(-3,4)
|
midpoint\:(6,3),(-3,4)
|
inverse of y=sqrt(x+4)-2
|
inverse\:y=\sqrt{x+4}-2
|
inverse of f(x)= 3/(2x-3)
|
inverse\:f(x)=\frac{3}{2x-3}
|
inverse of 2b^2+4b-5
|
inverse\:2b^{2}+4b-5
|
inverse of h(x)=x^2-4,x>= 0
|
inverse\:h(x)=x^{2}-4,x\ge\:0
|
inverse of (2x-9)/(x-4)
|
inverse\:\frac{2x-9}{x-4}
|
inverse of (2x+1)/(2x)
|
inverse\:\frac{2x+1}{2x}
|
inverse of f(x)=-0.8x+188
|
inverse\:f(x)=-0.8x+188
|
inverse of f(x)=1.7
|
inverse\:f(x)=1.7
|
inverse of f(x)=4.5-2a^{0.5}(a-x)^{0.5}
|
inverse\:f(x)=4.5-2a^{0.5}(a-x)^{0.5}
|
domain of f(x)=sqrt(x^2-5x-6)
|
domain\:f(x)=\sqrt{x^{2}-5x-6}
|
inverse of F(x)=10x+4
|
inverse\:F(x)=10x+4
|
inverse of f(x)= 5/(y-1)
|
inverse\:f(x)=\frac{5}{y-1}
|
inverse of a^{10y}
|
inverse\:a^{10y}
|
inverse of f(x)=(3\sqrt[3]{x-4}+2)^5
|
inverse\:f(x)=(3\sqrt[3]{x-4}+2)^{5}
|
inverse of f(x)=(5x-8)/(x+2)
|
inverse\:f(x)=\frac{5x-8}{x+2}
|
inverse of f(x)=((1-ln(x)))/2
|
inverse\:f(x)=\frac{(1-\ln(x))}{2}
|
inverse of (x+10)/7
|
inverse\:\frac{x+10}{7}
|
inverse of f(x)=4((x-2)/4)-2
|
inverse\:f(x)=4(\frac{x-2}{4})-2
|
inverse of f(x)=|x-1|x>= 1
|
inverse\:f(x)=\left|x-1\right|x\ge\:1
|
inverse of f(x)=sqrt((4x+40)/3)
|
inverse\:f(x)=\sqrt{\frac{4x+40}{3}}
|
domain of f(x)=-(7x)/(6x-5)
|
domain\:f(x)=-\frac{7x}{6x-5}
|
inverse of f(x)=sqrt(y-5)
|
inverse\:f(x)=\sqrt{y-5}
|
inverse of 6e^{x-4}
|
inverse\:6e^{x-4}
|
inverse of (t^3)/3
|
inverse\:\frac{t^{3}}{3}
|
inverse of f(x)=f(x)= 2/5 x^3-4
|
inverse\:f(x)=f(x)=\frac{2}{5}x^{3}-4
|
inverse of f(x)=(1/(0.15x+1))
|
inverse\:f(x)=(\frac{1}{0.15x+1})
|
inverse of-3(1/2)^x-6
|
inverse\:-3(\frac{1}{2})^{x}-6
|
inverse of f(x)=-6(-6x)
|
inverse\:f(x)=-6(-6x)
|
inverse of 6/(s^2+4)
|
inverse\:\frac{6}{s^{2}+4}
|
inverse of f(x)=3arccos(x)
|
inverse\:f(x)=3\arccos(x)
|
inverse of f(x)=x^2-12,x>= 0
|
inverse\:f(x)=x^{2}-12,x\ge\:0
|
domain of f(x)=ln(x^2-14x)
|
domain\:f(x)=\ln(x^{2}-14x)
|
inverse of f(x)=7e^{-x}-3
|
inverse\:f(x)=7e^{-x}-3
|
inverse of f(x)=tan(sqrt(3))
|
inverse\:f(x)=\tan(\sqrt{3})
|
inverse of (1-x^3)/7
|
inverse\:\frac{1-x^{3}}{7}
|
inverse of f(x)=2^{sqrt(x)}
|
inverse\:f(x)=2^{\sqrt{x}}
|
inverse of 4cos(3x-pi/2)
|
inverse\:4\cos(3x-\frac{π}{2})
|
inverse of f(x)=sqrt(7+x)
|
inverse\:f(x)=\sqrt{7+x}
|
inverse of h(x)=(10x)/(8x-3)
|
inverse\:h(x)=\frac{10x}{8x-3}
|
inverse of f(x)=(4+x^2)/2
|
inverse\:f(x)=\frac{4+x^{2}}{2}
|
inverse of f(x)= x/3+7
|
inverse\:f(x)=\frac{x}{3}+7
|
inverse of 12*x^2-60x+44
|
inverse\:12\cdot\:x^{2}-60x+44
|
distance (-5,-3),(4,-2)
|
distance\:(-5,-3),(4,-2)
|
inverse of f(c)=sqrt(c-8)
|
inverse\:f(c)=\sqrt{c-8}
|
inverse of-3/4 x-2
|
inverse\:-\frac{3}{4}x-2
|
inverse of f(x)=(1/2)^{-x+2}-4
|
inverse\:f(x)=(\frac{1}{2})^{-x+2}-4
|
inverse of f(x)=arctan(x/a)
|
inverse\:f(x)=\arctan(\frac{x}{a})
|
inverse of (x+9)/(x+1)
|
inverse\:\frac{x+9}{x+1}
|
inverse of f(x)= 4/(2x^2+6)
|
inverse\:f(x)=\frac{4}{2x^{2}+6}
|
inverse of 10(3)+14
|
inverse\:10(3)+14
|
inverse of x^2-18x=g(x)
|
inverse\:x^{2}-18x=g(x)
|
inverse of-x^5
|
inverse\:-x^{5}
|
domain of 3
|
domain\:3
|
inverse of f(x)=2(4^x)
|
inverse\:f(x)=2(4^{x})
|
inverse of (5x-1)/(7x+6)
|
inverse\:\frac{5x-1}{7x+6}
|
inverse of (1/2-x)^2-2
|
inverse\:(\frac{1}{2}-x)^{2}-2
|
inverse of f(x)=((7x-1))/(9x+8)
|
inverse\:f(x)=\frac{(7x-1)}{9x+8}
|
inverse of h(x)=\sqrt[3]{(x+5)}-1
|
inverse\:h(x)=\sqrt[3]{(x+5)}-1
|
inverse of f(x)=4-7y
|
inverse\:f(x)=4-7y
|
inverse of f(x)=ln(x/(2x-1))
|
inverse\:f(x)=\ln(\frac{x}{2x-1})
|
inverse of x+2-2sqrt(x+3)
|
inverse\:x+2-2\sqrt{x+3}
|
inverse of f(x)=2^{x-3}-5,(4,7)
|
inverse\:f(x)=2^{x-3}-5,(4,7)
|
inverse of f(x)=((3*x-1))
|
inverse\:f(x)=((3\cdot\:x-1))
|
slope intercept of 2x-y=-7
|
slope\:intercept\:2x-y=-7
|
inverse of f(x)=(5x+7)/(3x-5)
|
inverse\:f(x)=\frac{5x+7}{3x-5}
|
inverse of 2^{x^2+2x}
|
inverse\:2^{x^{2}+2x}
|
inverse of f(x)=7+sqrt(x-7)
|
inverse\:f(x)=7+\sqrt{x-7}
|
inverse of sqrt((7x-5)/(11))
|
inverse\:\sqrt{\frac{7x-5}{11}}
|
inverse of log_{9}(2)
|
inverse\:\log_{9}(2)
|
inverse of 3-sqrt(x+5)
|
inverse\:3-\sqrt{x+5}
|
inverse of 2log_{10}(3x-4)
|
inverse\:2\log_{10}(3x-4)
|
inverse of f(x)=(x^3-2)^{1/5}-4
|
inverse\:f(x)=(x^{3}-2)^{\frac{1}{5}}-4
|
inverse of f(x)=(3x)/(4-7x)
|
inverse\:f(x)=\frac{3x}{4-7x}
|
inverse of (2x)/(x^2+1)
|
inverse\:\frac{2x}{x^{2}+1}
|
inverse of f(x)= 1/(e^x)
|
inverse\:f(x)=\frac{1}{e^{x}}
|
inverse of f(x)=(4x-3)/(x+1)
|
inverse\:f(x)=\frac{4x-3}{x+1}
|
inverse of 2-e^{x+3}
|
inverse\:2-e^{x+3}
|
inverse of f(x)=5^x+5^7
|
inverse\:f(x)=5^{x}+5^{7}
|