Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inflection x^4-2x^2+1
inflection\:x^{4}-2x^{2}+1
range of 1/(sqrt(t))
range\:\frac{1}{\sqrt{t}}
inverse of-x^3-2
inverse\:-x^{3}-2
extreme f(x)=x^2+4x+3
extreme\:f(x)=x^{2}+4x+3
slope ofintercept f(x)=-0.388x+170.96
slopeintercept\:f(x)=-0.388x+170.96
extreme f(x)=ln(5-6x^2)
extreme\:f(x)=\ln(5-6x^{2})
domain of f(x)=(x^2+4)/(x-2)
domain\:f(x)=\frac{x^{2}+4}{x-2}
slope ofintercept 3x+3y=24
slopeintercept\:3x+3y=24
domain of f(x)= 2/((x-4)(-x+6))
domain\:f(x)=\frac{2}{(x-4)(-x+6)}
inverse of f(x)=sqrt(x+2)-9
inverse\:f(x)=\sqrt{x+2}-9
domain of f(x)=x-4+9x^2
domain\:f(x)=x-4+9x^{2}
inverse of y=x^{1/2}+4
inverse\:y=x^{\frac{1}{2}}+4
domain of (x^2-7x+12)/(x^2-9)
domain\:\frac{x^{2}-7x+12}{x^{2}-9}
intercepts of (4(x+1))/(x(x-4))
intercepts\:\frac{4(x+1)}{x(x-4)}
domain of (x^2)/((x-1))
domain\:\frac{x^{2}}{(x-1)}
inverse of f(x)=16+\sqrt[3]{x}
inverse\:f(x)=16+\sqrt[3]{x}
inverse of f(x)= 1/5 (x+18)^3-4
inverse\:f(x)=\frac{1}{5}(x+18)^{3}-4
domain of (x+5)/(x^2-16)
domain\:\frac{x+5}{x^{2}-16}
domain of (x^2+3)/2
domain\:\frac{x^{2}+3}{2}
intercepts of y=x(x-4)
intercepts\:y=x(x-4)
domain of f(x)= 1/(x^2+3x-10)
domain\:f(x)=\frac{1}{x^{2}+3x-10}
inverse of f(x)=(x-1)/(x+3)
inverse\:f(x)=\frac{x-1}{x+3}
intercepts of y=-x-8
intercepts\:y=-x-8
slope of 9x-4y=36
slope\:9x-4y=36
asymptotes of f(x)= x/(2x+1)
asymptotes\:f(x)=\frac{x}{2x+1}
intercepts of f(x)=6x+7y=42
intercepts\:f(x)=6x+7y=42
perpendicular y=8x-6,(3,6)
perpendicular\:y=8x-6,(3,6)
parity sec(x)dx
parity\:\sec(x)dx
inverse of f(x)= 9/(x-4)
inverse\:f(x)=\frac{9}{x-4}
inverse of y= x/((x^2+1))
inverse\:y=\frac{x}{(x^{2}+1)}
inverse of f(x)=-3/2 x+3/2
inverse\:f(x)=-\frac{3}{2}x+\frac{3}{2}
range of 6000-500x
range\:6000-500x
inverse of y=0.5x^2+2
inverse\:y=0.5x^{2}+2
slope ofintercept-8y=-7x+20
slopeintercept\:-8y=-7x+20
range of f(x)=4e^{4x}
range\:f(x)=4e^{4x}
inverse of f(x)=((x+14))/(x-10)
inverse\:f(x)=\frac{(x+14)}{x-10}
domain of f(x)=8(x/2)-7
domain\:f(x)=8(\frac{x}{2})-7
range of 6x-2
range\:6x-2
inverse of f(x)=\sqrt[3]{x-12}
inverse\:f(x)=\sqrt[3]{x-12}
inverse of (e^x)/(1+2e^x)
inverse\:\frac{e^{x}}{1+2e^{x}}
asymptotes of f(x)=ln(x-1)
asymptotes\:f(x)=\ln(x-1)
domain of \sqrt[3]{x+7}
domain\:\sqrt[3]{x+7}
midpoint (-4,-1),(5,3)
midpoint\:(-4,-1),(5,3)
parallel y=4x+6(-3.3)
parallel\:y=4x+6(-3.3)
parity f(x)=(5+x)/(e^{cos(x))}
parity\:f(x)=\frac{5+x}{e^{\cos(x)}}
shift sec(2x-3pi)
shift\:\sec(2x-3π)
extreme f(x)=2x^3-9x^2-240x
extreme\:f(x)=2x^{3}-9x^{2}-240x
range of f(x)=ln(x-2)
range\:f(x)=\ln(x-2)
asymptotes of (x^2)/((x-2)^2)
asymptotes\:\frac{x^{2}}{(x-2)^{2}}
extreme ln(3-2x^2)
extreme\:\ln(3-2x^{2})
inverse of f(x)=3-4x^2
inverse\:f(x)=3-4x^{2}
domain of 4/(x^2-4)
domain\:\frac{4}{x^{2}-4}
inverse of f(x)=sqrt(x^2-1)
inverse\:f(x)=\sqrt{x^{2}-1}
range of x^2-6x+7
range\:x^{2}-6x+7
intercepts of f(x)=((3))/((x-2))
intercepts\:f(x)=\frac{(3)}{(x-2)}
perpendicular y=-1/3 x+3 2/3 ,\at x=15
perpendicular\:y=-\frac{1}{3}x+3\frac{2}{3},\at\:x=15
extreme f(x)=xsqrt(25-x^2)
extreme\:f(x)=x\sqrt{25-x^{2}}
domain of x^2+4
domain\:x^{2}+4
domain of f(x)=x^2-49
domain\:f(x)=x^{2}-49
domain of f(x)=(x+4)/(x^3-4x)
domain\:f(x)=\frac{x+4}{x^{3}-4x}
intercepts of z^4+2z^3+6z^2+8z+8
intercepts\:z^{4}+2z^{3}+6z^{2}+8z+8
asymptotes of f(x)=-log_{1/5}(x-7)
asymptotes\:f(x)=-\log_{\frac{1}{5}}(x-7)
slope ofintercept f(x)=2x-3
slopeintercept\:f(x)=2x-3
monotone f(x)=x^3-5x^2+6
monotone\:f(x)=x^{3}-5x^{2}+6
domain of y=b^x
domain\:y=b^{x}
inverse of 9-9/(x^2),x>0
inverse\:9-\frac{9}{x^{2}},x>0
inverse of f(x)=(5x)/(6x-1)
inverse\:f(x)=\frac{5x}{6x-1}
inflection f(x)=(x+4)^{2/7}
inflection\:f(x)=(x+4)^{\frac{2}{7}}
inverse of f(x)=2^{x-4}
inverse\:f(x)=2^{x-4}
domain of f(x)=ln(16-t^2)
domain\:f(x)=\ln(16-t^{2})
intercepts of f(x)=x^3-3x^2-x+3
intercepts\:f(x)=x^{3}-3x^{2}-x+3
inverse of f(x)= 5/(9+x)
inverse\:f(x)=\frac{5}{9+x}
critical x^5ln(x)
critical\:x^{5}\ln(x)
parity ln(sec(x))dx
parity\:\ln(\sec(x))dx
inverse of f(x)=(2x+1)/(x+2)
inverse\:f(x)=\frac{2x+1}{x+2}
intercepts of (x+1)(x-2)-2
intercepts\:(x+1)(x-2)-2
y=tan(x)
y=\tan(x)
midpoint (-3,6),(5,-6)
midpoint\:(-3,6),(5,-6)
intercepts of f(x)=-6x^2+384
intercepts\:f(x)=-6x^{2}+384
domain of f(x)=(x^2+2)/(3x^2-1)
domain\:f(x)=\frac{x^{2}+2}{3x^{2}-1}
monotone f(x)=(e^x)/x
monotone\:f(x)=\frac{e^{x}}{x}
y=cot(x)
y=\cot(x)
range of f(x)=-sqrt(x+3)-2
range\:f(x)=-\sqrt{x+3}-2
domain of f(x)=sqrt(2-4x)-3
domain\:f(x)=\sqrt{2-4x}-3
inverse of f(x)=2x^2-3
inverse\:f(x)=2x^{2}-3
inverse of f(x)=2x+12
inverse\:f(x)=2x+12
range of f(x)=-sqrt(2x+3)
range\:f(x)=-\sqrt{2x+3}
domain of f(x)=(2)
domain\:f(x)=(2)
inverse of f(x)=sqrt(2x^2+5)
inverse\:f(x)=\sqrt{2x^{2}+5}
inverse of f(x)=5x^3-8
inverse\:f(x)=5x^{3}-8
extreme f(x)=-sqrt(x^2+8x+41)
extreme\:f(x)=-\sqrt{x^{2}+8x+41}
domain of f(x)= 3/(\frac{x){x+3}}
domain\:f(x)=\frac{3}{\frac{x}{x+3}}
asymptotes of ((x-2)^2)/(x-2)
asymptotes\:\frac{(x-2)^{2}}{x-2}
asymptotes of (2x-1)/(3x-5)
asymptotes\:\frac{2x-1}{3x-5}
critical f(x)=x^{1/5}
critical\:f(x)=x^{\frac{1}{5}}
domain of f(x)=2sqrt(x+5)+5
domain\:f(x)=2\sqrt{x+5}+5
inverse of f(x)=(2x)/(7x-3)
inverse\:f(x)=\frac{2x}{7x-3}
inverse of-2/(x+3)
inverse\:-\frac{2}{x+3}
intercepts of x^2+5x-14
intercepts\:x^{2}+5x-14
inverse of f(x)=((x+2)(x+3))/(2(x+2))
inverse\:f(x)=\frac{(x+2)(x+3)}{2(x+2)}
1
..
195
196
197
198
199
..
1324