f(x)=x^5+10x^3+20x-4
|
f(x)=x^{5}+10x^{3}+20x-4
|
f(x)=(4x+4)/(3x^{2/3)}
|
f(x)=\frac{4x+4}{3x^{\frac{2}{3}}}
|
f(x)=-3x^2-12x-17
|
f(x)=-3x^{2}-12x-17
|
f(m)=m^2+16
|
f(m)=m^{2}+16
|
y=-5|x+4|+7
|
y=-5\left|x+4\right|+7
|
g(x)=\sqrt[3]{x}-2
|
g(x)=\sqrt[3]{x}-2
|
f(x)=-(25-x^2)^2
|
f(x)=-(25-x^{2})^{2}
|
f(x)=2x^3+log_{10}(x+4)+100
|
f(x)=2x^{3}+\log_{10}(x+4)+100
|
domain of f(x)=sin(7x)
|
domain\:f(x)=\sin(7x)
|
f(x)=sec^6(x)
|
f(x)=\sec^{6}(x)
|
f(x)=x^2-4/3 x+1
|
f(x)=x^{2}-\frac{4}{3}x+1
|
f(x)=36+x^2
|
f(x)=36+x^{2}
|
f(x)=cos(2θ)+sin(2)(θ)2cos(θ)
|
f(x)=\cos(2θ)+\sin(2)(θ)2\cos(θ)
|
f(x)=(sin(2x))/4
|
f(x)=\frac{\sin(2x)}{4}
|
y=ln(a+x+sqrt(x^2+2ax))
|
y=\ln(a+x+\sqrt{x^{2}+2ax})
|
f(x)=2x^3+3x^2-4x-5
|
f(x)=2x^{3}+3x^{2}-4x-5
|
y=(2x)^{1/3}-7
|
y=(2x)^{\frac{1}{3}}-7
|
g(x)=-sin(8x-3)+5
|
g(x)=-\sin(8x-3)+5
|
f(x)=2e^x-x^2
|
f(x)=2e^{x}-x^{2}
|
inflection points of f(x)=-2/(x+3)
|
inflection\:points\:f(x)=-\frac{2}{x+3}
|
f(x)=sqrt(4-9x)
|
f(x)=\sqrt{4-9x}
|
f(x)=-3x^2log_{10}(x+8)
|
f(x)=-3x^{2}\log_{10}(x+8)
|
f(x)=(6x^2+4x+2)
|
f(x)=(6x^{2}+4x+2)
|
f(x)=x^4-7
|
f(x)=x^{4}-7
|
P(x)=(x+2)(x+1)^2(2x-3)
|
P(x)=(x+2)(x+1)^{2}(2x-3)
|
f(x)=ln(3-ln(x))
|
f(x)=\ln(3-\ln(x))
|
f(x)=(x-5)/((2x-4))
|
f(x)=\frac{x-5}{(2x-4)}
|
f(x)=5x^2-8x+3
|
f(x)=5x^{2}-8x+3
|
g(x)=log_{5}(x+3)
|
g(x)=\log_{5}(x+3)
|
3sin(x)
|
3\sin(x)
|
domain of |x|
|
domain\:|x|
|
f(x)=8x^2-x^5
|
f(x)=8x^{2}-x^{5}
|
y=2|x-1|+4
|
y=2\left|x-1\right|+4
|
f(x)=e^x(x+1)
|
f(x)=e^{x}(x+1)
|
y=4cot(pix)
|
y=4\cot(πx)
|
f(x)=x^2-50
|
f(x)=x^{2}-50
|
-6x
|
-6x
|
f(y)=sqrt(16+y^2)
|
f(y)=\sqrt{16+y^{2}}
|
y=23.75x+2095
|
y=23.75x+2095
|
h(t)=-4t^2+20t
|
h(t)=-4t^{2}+20t
|
f(x)=18.711x-123
|
f(x)=18.711x-123
|
domain of f(x)=((5x+7))/(9x)
|
domain\:f(x)=\frac{(5x+7)}{9x}
|
f(x)=-2x^2-5x+16
|
f(x)=-2x^{2}-5x+16
|
y=e^{x+1}+1
|
y=e^{x+1}+1
|
f(x)=(x-8)/(x^2-3x-40)
|
f(x)=\frac{x-8}{x^{2}-3x-40}
|
y=4(3x^2-7x)^3
|
y=4(3x^{2}-7x)^{3}
|
y= 1/3 x+9
|
y=\frac{1}{3}x+9
|
y= 1/3 x+b
|
y=\frac{1}{3}x+b
|
y= 1/(-x)
|
y=\frac{1}{-x}
|
y=\sqrt[3]{x^2+x+1}
|
y=\sqrt[3]{x^{2}+x+1}
|
f(x)=(x-1)/(x^2+x-6)
|
f(x)=\frac{x-1}{x^{2}+x-6}
|
intercepts of (x^2-16)/(x-4)
|
intercepts\:\frac{x^{2}-16}{x-4}
|
g(x)= x/(x-5)
|
g(x)=\frac{x}{x-5}
|
y=-x^2+2x-6
|
y=-x^{2}+2x-6
|
f(X)=5X^2
|
f(X)=5X^{2}
|
g(x)= 1/((x^2+x+1)^3)
|
g(x)=\frac{1}{(x^{2}+x+1)^{3}}
|
f(x)=(x-3)/(x^2-81)
|
f(x)=\frac{x-3}{x^{2}-81}
|
f(x)= 1/(sin^3(x))
|
f(x)=\frac{1}{\sin^{3}(x)}
|
y= 4/(cos(x))+1/(tan(x))
|
y=\frac{4}{\cos(x)}+\frac{1}{\tan(x)}
|
y= 1/((x^2-1)(x^2+x+1))
|
y=\frac{1}{(x^{2}-1)(x^{2}+x+1)}
|
f(x)=(8x-sqrt(3))/(2x+sqrt(3))
|
f(x)=\frac{8x-\sqrt{3}}{2x+\sqrt{3}}
|
f(x)=3tan(0.7x)
|
f(x)=3\tan(0.7x)
|
line (2,-3),(4,5)
|
line\:(2,-3),(4,5)
|
monotone intervals f(x)=(x-7)e^{-6x}
|
monotone\:intervals\:f(x)=(x-7)e^{-6x}
|
f(x)=1.84x^{3000}
|
f(x)=1.84x^{3000}
|
y=-(x-1)^{(3)}+27
|
y=-(x-1)^{(3)}+27
|
f(x)=3(n-4)^2-10
|
f(x)=3(n-4)^{2}-10
|
f(x)= 1/(3x-12)
|
f(x)=\frac{1}{3x-12}
|
C(x)=80.62x^3-161.24x^2+8062x
|
C(x)=80.62x^{3}-161.24x^{2}+8062x
|
f(x)= 1/(x-10)
|
f(x)=\frac{1}{x-10}
|
f(x,y)=5x^3y^6,(-1,1),θ= pi/6
|
f(x,y)=5x^{3}y^{6},(-1,1),θ=\frac{π}{6}
|
f(x)=x^2+17
|
f(x)=x^{2}+17
|
f(x)=sin(5x)dx
|
f(x)=\sin(5x)dx
|
f(x)=sin(2x+pi/4)
|
f(x)=\sin(2x+\frac{π}{4})
|
inverse of f(x)=5x-11
|
inverse\:f(x)=5x-11
|
y=(sqrt(x^2+x+5))/(x+6)
|
y=\frac{\sqrt{x^{2}+x+5}}{x+6}
|
C(x)=40+(ln(2))x^2
|
C(x)=40+(\ln(2))x^{2}
|
f(x)=ln(sqrt(tan(x)))
|
f(x)=\ln(\sqrt{\tan(x)})
|
f(y)=y^4+1
|
f(y)=y^{4}+1
|
f(x)= 1/2 ln(x^2+1)
|
f(x)=\frac{1}{2}\ln(x^{2}+1)
|
f(φ)=cos(φ)
|
f(φ)=\cos(φ)
|
y= 4/(x^2-4)
|
y=\frac{4}{x^{2}-4}
|
f(y)=sqrt(y+1)
|
f(y)=\sqrt{y+1}
|
sqrt(9-x^2)
|
\sqrt{9-x^{2}}
|
f(3)=2X^3-10X-8
|
f(3)=2X^{3}-10X-8
|
asymptotes of f(x)=(x+2)/(2x-9)
|
asymptotes\:f(x)=\frac{x+2}{2x-9}
|
h(t)=sqrt((t+1)/(3t+4))
|
h(t)=\sqrt{\frac{t+1}{3t+4}}
|
F(x)=sqrt(x-5)
|
F(x)=\sqrt{x-5}
|
P(x)=4x^2+(14)x+(49)
|
P(x)=4x^{2}+(14)x+(49)
|
f(x)=3x^3+4x^2+7x-12
|
f(x)=3x^{3}+4x^{2}+7x-12
|
y= 1/4 (x-2)^2+6
|
y=\frac{1}{4}(x-2)^{2}+6
|
f(x)=(8x^2+16x-64)/(x^2)
|
f(x)=\frac{8x^{2}+16x-64}{x^{2}}
|
f(x)=(sqrt(x-1))/(x+1)
|
f(x)=\frac{\sqrt{x-1}}{x+1}
|
f(x)=log_{2}(x-2)-2
|
f(x)=\log_{2}(x-2)-2
|
f(x)=sin(x+cos(x))
|
f(x)=\sin(x+\cos(x))
|
y=(x-5)/(x^2-25)
|
y=\frac{x-5}{x^{2}-25}
|
range of ((x^2+5))/(2x^2-x-1)
|
range\:\frac{(x^{2}+5)}{2x^{2}-x-1}
|
f(x)=6x^2+96x+378
|
f(x)=6x^{2}+96x+378
|
f(x)=5x^2-x+3
|
f(x)=5x^{2}-x+3
|
h(x)=((x^3-4x^2-13x+24))/((x^2-7x+8))
|
h(x)=\frac{(x^{3}-4x^{2}-13x+24)}{(x^{2}-7x+8)}
|