f(x)= x/2+6
|
f(x)=\frac{x}{2}+6
|
f(x)=16(8^{-x-2})+8
|
f(x)=16(8^{-x-2})+8
|
f(m)=m+5
|
f(m)=m+5
|
f(m)=m-1
|
f(m)=m-1
|
g(x)=-5ln(x)
|
g(x)=-5\ln(x)
|
f(t)=e^{4t}sin(2t)cos(t)
|
f(t)=e^{4t}\sin(2t)\cos(t)
|
f(x)=x^2+6x+45
|
f(x)=x^{2}+6x+45
|
f(x)=cos(4)x^2
|
f(x)=\cos(4)x^{2}
|
intercepts of h(x)=x^3-5x^2+4x-20
|
intercepts\:h(x)=x^{3}-5x^{2}+4x-20
|
f(x)=10^x+x^3+2
|
f(x)=10^{x}+x^{3}+2
|
f(x)=6-2x+4x^2-5x^3
|
f(x)=6-2x+4x^{2}-5x^{3}
|
f(z)=z^2-2z-2
|
f(z)=z^{2}-2z-2
|
f(x)=(4+1/x)(2x-1/(x^2))
|
f(x)=(4+\frac{1}{x})(2x-\frac{1}{x^{2}})
|
f(x)=sqrt(30-4x-2x^2)
|
f(x)=\sqrt{30-4x-2x^{2}}
|
f(t)=(5t^3-t^4)/(t^2)
|
f(t)=\frac{5t^{3}-t^{4}}{t^{2}}
|
f(x)=(3x+2)/(x+1)
|
f(x)=\frac{3x+2}{x+1}
|
f(s)=(3s)/(s^2+4s+13)
|
f(s)=\frac{3s}{s^{2}+4s+13}
|
y=-x^2+4x+8
|
y=-x^{2}+4x+8
|
y=2cos(x-pi/3)
|
y=2\cos(x-\frac{π}{3})
|
domain of f(x)=(x+6)/(x(x+11))
|
domain\:f(x)=\frac{x+6}{x(x+11)}
|
f(I_{2})=I_{2}
|
f(I_{2})=I_{2}
|
y=3(1/5)^{2x}
|
y=3(\frac{1}{5})^{2x}
|
f(x)=-5(3x-2x^2)
|
f(x)=-5(3x-2x^{2})
|
C(x)=2x^2+100x
|
C(x)=2x^{2}+100x
|
y=2cos(x-pi/2)
|
y=2\cos(x-\frac{π}{2})
|
f(x)=x^5-5x-10
|
f(x)=x^{5}-5x-10
|
f(x)=2|x+1|-10
|
f(x)=2\left|x+1\right|-10
|
y=4*3^x
|
y=4\cdot\:3^{x}
|
f(x)= 6/(x+2),(0,3)
|
f(x)=\frac{6}{x+2},(0,3)
|
f(x)=-2log_{3}(x+4)
|
f(x)=-2\log_{3}(x+4)
|
asymptotes of f(x)=(x-8)/(x+5)
|
asymptotes\:f(x)=\frac{x-8}{x+5}
|
y=x^{5/3}
|
y=x^{\frac{5}{3}}
|
f(x)= 8/(2x^2-5)
|
f(x)=\frac{8}{2x^{2}-5}
|
f(x)=1xln(1+x)
|
f(x)=1x\ln(1+x)
|
f(x)=sqrt(2x^2-x^3)
|
f(x)=\sqrt{2x^{2}-x^{3}}
|
f(x)=sqrt(x^3)+\sqrt[3]{x^5}+10
|
f(x)=\sqrt{x^{3}}+\sqrt[3]{x^{5}}+10
|
y=(-5x-7)^3
|
y=(-5x-7)^{3}
|
y=3+cos(2x+pi/2)
|
y=3+\cos(2x+\frac{π}{2})
|
y=-2x^2+16x-20
|
y=-2x^{2}+16x-20
|
Q(a)=a^12-6a^8+5a^4+2a^6-6a^2+1
|
Q(a)=a^{1}2-6a^{8}+5a^{4}+2a^{6}-6a^{2}+1
|
f(x)=e^xx-2e^x
|
f(x)=e^{x}x-2e^{x}
|
range of tan((pi)/9 x)
|
range\:\tan(\frac{\pi}{9}x)
|
y=cos(x)-2
|
y=\cos(x)-2
|
y=x^3-9x^2+23x-15
|
y=x^{3}-9x^{2}+23x-15
|
f(x)=13x^2-4x-43
|
f(x)=13x^{2}-4x-43
|
f(x)=log_{2}(2x+1)-3
|
f(x)=\log_{2}(2x+1)-3
|
f(x)=(2x+1)(3x^2+6)
|
f(x)=(2x+1)(3x^{2}+6)
|
y=-9x^2+16
|
y=-9x^{2}+16
|
f(x)=x^2-20x+50
|
f(x)=x^{2}-20x+50
|
y=4(3)^x
|
y=4(3)^{x}
|
f(x)=11x^4-9x^3+x^2-x+1
|
f(x)=11x^{4}-9x^{3}+x^{2}-x+1
|
y=-14x+1
|
y=-14x+1
|
domain of 1+x^2
|
domain\:1+x^{2}
|
range of sqrt(x+4)-1
|
range\:\sqrt{x+4}-1
|
f(x)=-5x^4-8x^3+2x^2-4x-4
|
f(x)=-5x^{4}-8x^{3}+2x^{2}-4x-4
|
f(x)=-x^3+9x^2-5
|
f(x)=-x^{3}+9x^{2}-5
|
f(x)=-2+x^2
|
f(x)=-2+x^{2}
|
f(x)=(x^2-3)/(x+sqrt(3))
|
f(x)=\frac{x^{2}-3}{x+\sqrt{3}}
|
y=2sin(1/3 (x-4))+1
|
y=2\sin(\frac{1}{3}(x-4))+1
|
f(x)=(-6x^3+8x^2)/(4x-9)
|
f(x)=\frac{-6x^{3}+8x^{2}}{4x-9}
|
y=-13/8 x^3
|
y=-\frac{13}{8}x^{3}
|
f(t)=e^{-4t}cos(3t)+t^2sin(3t)
|
f(t)=e^{-4t}\cos(3t)+t^{2}\sin(3t)
|
y=6+3x-4x(7x+1)^5
|
y=6+3x-4x(7x+1)^{5}
|
sqrt(y+10)-10
|
\sqrt{y+10}-10
|
asymptotes of f(x)= x/(x^2+2x)
|
asymptotes\:f(x)=\frac{x}{x^{2}+2x}
|
f(x)=-2x^6
|
f(x)=-2x^{6}
|
f(x)=-x^4+4x^3+10x^2-40x
|
f(x)=-x^{4}+4x^{3}+10x^{2}-40x
|
f(x)=(x-1)^5
|
f(x)=(x-1)^{5}
|
f(t)=(sin(10t))/t+sin(2t)cos(3t)
|
f(t)=\frac{\sin(10t)}{t}+\sin(2t)\cos(3t)
|
y=cos(x)-sin(x)
|
y=\cos(x)-\sin(x)
|
f(x)=log_{x}(x+2)
|
f(x)=\log_{x}(x+2)
|
F(x)=(sqrt(2x^2-8))/(3x)
|
F(x)=\frac{\sqrt{2x^{2}-8}}{3x}
|
f(x)=2x+3x^{1.7}
|
f(x)=2x+3x^{1.7}
|
f(x)=x^6+7x^5+10x^4-x^3+10x^2+7x+1
|
f(x)=x^{6}+7x^{5}+10x^{4}-x^{3}+10x^{2}+7x+1
|
f(b)=b^6
|
f(b)=b^{6}
|
distance (5,4),(4,7)
|
distance\:(5,4),(4,7)
|
f(b)=b^5
|
f(b)=b^{5}
|
f(x)=(e^{2x}-e^x)/(5x)
|
f(x)=\frac{e^{2x}-e^{x}}{5x}
|
y=(x-3)sqrt(x)
|
y=(x-3)\sqrt{x}
|
f(m)=m^{4/7}
|
f(m)=m^{\frac{4}{7}}
|
f(x)=2^{cos(x^2)}
|
f(x)=2^{\cos(x^{2})}
|
f(x)=2^{3x}
|
f(x)=2^{3x}
|
f(x)= 8/(x+4)
|
f(x)=\frac{8}{x+4}
|
f(x)= 8/(x+3)
|
f(x)=\frac{8}{x+3}
|
f(x)=10x^2+x
|
f(x)=10x^{2}+x
|
f(x)=x^4+x^3-7x^2-5x+10
|
f(x)=x^{4}+x^{3}-7x^{2}-5x+10
|
domain of f(x)=(x^2-2x+7)/(sqrt(4-x))
|
domain\:f(x)=\frac{x^{2}-2x+7}{\sqrt{4-x}}
|
f(x)= 1/2 x^2-2x+6
|
f(x)=\frac{1}{2}x^{2}-2x+6
|
y=-0.25x^2+15x-200
|
y=-0.25x^{2}+15x-200
|
p(x)=x^3-3x-2
|
p(x)=x^{3}-3x-2
|
g(x)=(3x-1)/(2x+1)
|
g(x)=\frac{3x-1}{2x+1}
|
f(x)=x^{1/3}-1/x-pi/(x^2)+4x-(x-2)^2
|
f(x)=x^{\frac{1}{3}}-\frac{1}{x}-\frac{π}{x^{2}}+4x-(x-2)^{2}
|
f(x)=(-2x(x+3)^2(x+2))/(3x(x+2)(x+3)^2)
|
f(x)=\frac{-2x(x+3)^{2}(x+2)}{3x(x+2)(x+3)^{2}}
|
f(t)=e^{2t}sin(t)
|
f(t)=e^{2t}\sin(t)
|
f(x)={1/2 x+1,x<-1}
|
f(x)=\left\{\frac{1}{2}x+1,x<-1\right\}
|
y=x^4x^2-4
|
y=x^{4}x^{2}-4
|
f(x)=sqrt(ln(x+2))
|
f(x)=\sqrt{\ln(x+2)}
|
range of f(x)=(11)/x
|
range\:f(x)=\frac{11}{x}
|
f(y)=y^{4/5}
|
f(y)=y^{\frac{4}{5}}
|
f(x)=x^4-1x^2
|
f(x)=x^{4}-1x^{2}
|