y=x^2+100
|
y=x^{2}+100
|
y=-2|x-3|+1
|
y=-2\left|x-3\right|+1
|
f(x)=sqrt(x)3
|
f(x)=\sqrt{x}3
|
h(x)=ln(x+sqrt(x^2-1))
|
h(x)=\ln(x+\sqrt{x^{2}-1})
|
g(x)=x^3-3x
|
g(x)=x^{3}-3x
|
y=3^{-x}-3
|
y=3^{-x}-3
|
f(x)=csc(pix)
|
f(x)=\csc(πx)
|
slope intercept of y=-2x-4
|
slope\:intercept\:y=-2x-4
|
f(x)=x^3-4x^2-12x
|
f(x)=x^{3}-4x^{2}-12x
|
f(x)=3-5/2 x
|
f(x)=3-\frac{5}{2}x
|
y=x^3-7
|
y=x^{3}-7
|
y=(4-3x)/2
|
y=\frac{4-3x}{2}
|
f(5)=x^2
|
f(5)=x^{2}
|
y=-4x^2+141x-703
|
y=-4x^{2}+141x-703
|
y=(x-1)^3-8
|
y=(x-1)^{3}-8
|
f(x)=(4-x^2)/(2-x)
|
f(x)=\frac{4-x^{2}}{2-x}
|
f(x)=-4x(x-4)(x+2)
|
f(x)=-4x(x-4)(x+2)
|
y=(2x^2-3x)/(x^2-x-12)
|
y=\frac{2x^{2}-3x}{x^{2}-x-12}
|
range of f(x)=x^6
|
range\:f(x)=x^{6}
|
y= 1/2 x-5/2
|
y=\frac{1}{2}x-\frac{5}{2}
|
xsin(x)
|
x\sin(x)
|
f(y)=sqrt(y/2)
|
f(y)=\sqrt{\frac{y}{2}}
|
f(x)=(1+x^4)^{1/2}
|
f(x)=(1+x^{4})^{\frac{1}{2}}
|
f(x)=sqrt(x^2-10x+21)-sqrt(x-1)
|
f(x)=\sqrt{x^{2}-10x+21}-\sqrt{x-1}
|
y=3-5x^2
|
y=3-5x^{2}
|
f(x)= 1/5 x^3-3
|
f(x)=\frac{1}{5}x^{3}-3
|
f(x)=(x+1)/(2-x)
|
f(x)=\frac{x+1}{2-x}
|
f(x)=(3x^4-2sqrt(x))e^x+2^{50}-e^2
|
f(x)=(3x^{4}-2\sqrt{x})e^{x}+2^{50}-e^{2}
|
f(x)=2x-1,-6<= x<= 4
|
f(x)=2x-1,-6\le\:x\le\:4
|
asymptotes of f(x)=(4x+3)/(2x-6)
|
asymptotes\:f(x)=\frac{4x+3}{2x-6}
|
f(x)=(x^2-x)/(x-2)
|
f(x)=\frac{x^{2}-x}{x-2}
|
g(x)= x/(x^2+64)
|
g(x)=\frac{x}{x^{2}+64}
|
f(x)=x^3-x^2+6
|
f(x)=x^{3}-x^{2}+6
|
f(x)=5-3x^3
|
f(x)=5-3x^{3}
|
f(u)=6u
|
f(u)=6u
|
f(x)= 1/(sqrt(8+x))
|
f(x)=\frac{1}{\sqrt{8+x}}
|
h(x)=(x^2+5)/(x-1)
|
h(x)=\frac{x^{2}+5}{x-1}
|
f(z)=(6-3z)/(5-6z)
|
f(z)=\frac{6-3z}{5-6z}
|
f(0)= 1/4 x-4
|
f(0)=\frac{1}{4}x-4
|
g(x)=|x+4|+2
|
g(x)=\left|x+4\right|+2
|
distance (-4,6)(0,-10)
|
distance\:(-4,6)(0,-10)
|
y=1.34x
|
y=1.34x
|
y=(x+5)(x-3)
|
y=(x+5)(x-3)
|
f(x)=x^9-6x^4+9
|
f(x)=x^{9}-6x^{4}+9
|
f(y)= 1/(1+y^2)
|
f(y)=\frac{1}{1+y^{2}}
|
y=|x+5|-3
|
y=\left|x+5\right|-3
|
f(x)=sec^4(x)+tan^4(x)
|
f(x)=\sec^{4}(x)+\tan^{4}(x)
|
f(x)=x^3,(2,8)
|
f(x)=x^{3},(2,8)
|
p(x)=x^3-7x-6
|
p(x)=x^{3}-7x-6
|
y= x/2-sin(x)
|
y=\frac{x}{2}-\sin(x)
|
f(j)=e^{2pij}
|
f(j)=e^{2πj}
|
inverse of f(x)=3(x-41)
|
inverse\:f(x)=3(x-41)
|
f(x)=sqrt(x-1)+sqrt(2-x)
|
f(x)=\sqrt{x-1}+\sqrt{2-x}
|
y=3(x-2)+1
|
y=3(x-2)+1
|
f(x)= 1/(e^x-e^{-x)}
|
f(x)=\frac{1}{e^{x}-e^{-x}}
|
f(s)=10s^2-4s+3
|
f(s)=10s^{2}-4s+3
|
f(x)=-2x^2+5x+7
|
f(x)=-2x^{2}+5x+7
|
y=4x^2+3x-9
|
y=4x^{2}+3x-9
|
f(x)=6x^2-2x+9
|
f(x)=6x^{2}-2x+9
|
f(x)=6x^2-2x-3
|
f(x)=6x^{2}-2x-3
|
f(x)=(16x^8+8x^4+1)/(16x^4)
|
f(x)=\frac{16x^{8}+8x^{4}+1}{16x^{4}}
|
f(x)=(sin(x))/((x))
|
f(x)=\frac{\sin(x)}{(x)}
|
slope intercept of 2-(3y+2x)/3 =3
|
slope\:intercept\:2-\frac{3y+2x}{3}=3
|
F(x)= 3/(x^2+1)
|
F(x)=\frac{3}{x^{2}+1}
|
f(y)=y*7
|
f(y)=y\cdot\:7
|
f(x)=-0.5x^2-2x+15
|
f(x)=-0.5x^{2}-2x+15
|
f(x)=-|3x-2|
|
f(x)=-\left|3x-2\right|
|
f(x)=sqrt(3x^2-1)
|
f(x)=\sqrt{3x^{2}-1}
|
y=-1.33x+2
|
y=-1.33x+2
|
y-5
|
y-5
|
f(x)=(sin(0.5sqrt(x)))/x
|
f(x)=\frac{\sin(0.5\sqrt{x})}{x}
|
y= a/(x^3)
|
y=\frac{a}{x^{3}}
|
y=ln(x+6)
|
y=\ln(x+6)
|
slope intercept of 1/4 x+y=-2/7
|
slope\:intercept\:\frac{1}{4}x+y=-\frac{2}{7}
|
y=θ
|
y=θ
|
domain of\&range f(x)=sqrt(x-5)
|
domain\&range\:f(x)=\sqrt{x-5}
|
f(x)=(x^2+2x+2)/(x+1)
|
f(x)=\frac{x^{2}+2x+2}{x+1}
|
f(t)=cos^2(t)*sin^2(t)
|
f(t)=\cos^{2}(t)\cdot\:\sin^{2}(t)
|
f(x)=(-2)/(-x+2)
|
f(x)=\frac{-2}{-x+2}
|
f(s)= 5/(s+3)
|
f(s)=\frac{5}{s+3}
|
y=ln(x)-x
|
y=\ln(x)-x
|
y=log_{3}(x+2)+3
|
y=\log_{3}(x+2)+3
|
f(x)=(x^2)(16x^3-3x+13)
|
f(x)=(x^{2})(16x^{3}-3x+13)
|
f(x)=sqrt(x^2-4x+2)
|
f(x)=\sqrt{x^{2}-4x+2}
|
extreme points of f(x)=x^3-6x^2+9x
|
extreme\:points\:f(x)=x^{3}-6x^{2}+9x
|
inverse of f(x)=-sqrt(2x+6)-4
|
inverse\:f(x)=-\sqrt{2x+6}-4
|
f(x)=3^x+9
|
f(x)=3^{x}+9
|
y=2ln(4-x^2),0<= x<= 1
|
y=2\ln(4-x^{2}),0\le\:x\le\:1
|
f(x)=x^3+x^2-x+6
|
f(x)=x^{3}+x^{2}-x+6
|
f(x)=-x^{5/3}+5x^{2/3}
|
f(x)=-x^{\frac{5}{3}}+5x^{\frac{2}{3}}
|
f(x)=-x+(ln(x))/x
|
f(x)=-x+\frac{\ln(x)}{x}
|
f(x)=log_{5}(x^2+1)
|
f(x)=\log_{5}(x^{2}+1)
|
f(x)=(2x^2-2x)/(x^2-4x+3)
|
f(x)=\frac{2x^{2}-2x}{x^{2}-4x+3}
|
f(x)=3x^3-36x
|
f(x)=3x^{3}-36x
|
f(x)=cosh(3x)+sinh(3x)
|
f(x)=\cosh(3x)+\sinh(3x)
|
f(x)=3sqrt((3x+2)/(x^2+1))
|
f(x)=3\sqrt{\frac{3x+2}{x^{2}+1}}
|
f(x)=-2x^2+12x-19
|
f(x)=-2x^{2}+12x-19
|
f(x)=cos(2x)-cos(3x)
|
f(x)=\cos(2x)-\cos(3x)
|
f(t)=25+75e^{-0.04t}
|
f(t)=25+75e^{-0.04t}
|
f(x)=x^3+7x^2+10x-16
|
f(x)=x^{3}+7x^{2}+10x-16
|