domain of f(x)=log_{2}(x-3)
|
domain\:f(x)=\log_{2}(x-3)
|
f(x)=x^3-3x^2-3x+1
|
f(x)=x^{3}-3x^{2}-3x+1
|
f(x)=2+x^3
|
f(x)=2+x^{3}
|
f(x)=sqrt(3-\sqrt{x)}
|
f(x)=\sqrt{3-\sqrt{x}}
|
f(x)= 1/(x^3+2)
|
f(x)=\frac{1}{x^{3}+2}
|
f(x)=x(x+5)(x-8)
|
f(x)=x(x+5)(x-8)
|
f(x)= 8/(xsqrt(x^2-4))
|
f(x)=\frac{8}{x\sqrt{x^{2}-4}}
|
f(x)=((x^2+2x+1))/x
|
f(x)=\frac{(x^{2}+2x+1)}{x}
|
f(x)=sqrt(cos^2(x)+1)
|
f(x)=\sqrt{\cos^{2}(x)+1}
|
y=3x^2-6x+21
|
y=3x^{2}-6x+21
|
f(t)=e^{3t}+cos(6t)-e^{3t}cos(6t)
|
f(t)=e^{3t}+\cos(6t)-e^{3t}\cos(6t)
|
inverse of f(x)=ln(x+6)
|
inverse\:f(x)=\ln(x+6)
|
inverse of 1/x+3
|
inverse\:\frac{1}{x}+3
|
f(x)=(sqrt(1-x))/x
|
f(x)=\frac{\sqrt{1-x}}{x}
|
y=(3x-1)/(3x^2+5x-2)
|
y=\frac{3x-1}{3x^{2}+5x-2}
|
f(x)=sqrt(2x^2-8)
|
f(x)=\sqrt{2x^{2}-8}
|
y= 1/(2x+sqrt(2))
|
y=\frac{1}{2x+\sqrt{2}}
|
y=(x+2)/(x^2-3x-10)
|
y=\frac{x+2}{x^{2}-3x-10}
|
f(x)=3x^2-x+9
|
f(x)=3x^{2}-x+9
|
y=4sin(x+45)+3
|
y=4\sin(x+45^{\circ\:})+3
|
f(x)=x^{10}+x^5-20
|
f(x)=x^{10}+x^{5}-20
|
y=(arcsin(2x))/(arccos(2x))
|
y=\frac{\arcsin(2x)}{\arccos(2x)}
|
f(x)=(x^2)/((x^2+3))
|
f(x)=\frac{x^{2}}{(x^{2}+3)}
|
domain of x^2+x-2
|
domain\:x^{2}+x-2
|
f(x)=4-(x-1)^2
|
f(x)=4-(x-1)^{2}
|
f(x)=sec^4(x)tan^4(x)
|
f(x)=\sec^{4}(x)\tan^{4}(x)
|
y=x^3+2x^2-2
|
y=x^{3}+2x^{2}-2
|
y=x^3+2x^2-1
|
y=x^{3}+2x^{2}-1
|
f(t)={t^2e^{-2t}:t>= 0,0:t<0}
|
f(t)=\left\{t^{2}e^{-2t}:t\ge\:0,0:t<0\right\}
|
f(x)=log_{1/5}(x^2-x-12)
|
f(x)=\log_{\frac{1}{5}}(x^{2}-x-12)
|
y=sin(x-pi/2)+1
|
y=\sin(x-\frac{π}{2})+1
|
f(j)=(5j^3+6j^2)^4
|
f(j)=(5j^{3}+6j^{2})^{4}
|
f(x)=-(x^2-9)(x+1)(2x-5)
|
f(x)=-(x^{2}-9)(x+1)(2x-5)
|
f(x)=(-6x\sqrt[5]{2x+6})/(log_{10)(x+2)}
|
f(x)=\frac{-6x\sqrt[5]{2x+6}}{\log_{10}(x+2)}
|
inverse of f(x)=160x-16x^2
|
inverse\:f(x)=160x-16x^{2}
|
f(x)=2sin^2(3x)
|
f(x)=2\sin^{2}(3x)
|
f(x)=-1/2 x+5
|
f(x)=-\frac{1}{2}x+5
|
f(x)=-sqrt(4-x^2),0<= x<2
|
f(x)=-\sqrt{4-x^{2}},0\le\:x<2
|
f(x)=4x^2+4x-4
|
f(x)=4x^{2}+4x-4
|
f(x)=sqrt(x+5)-4
|
f(x)=\sqrt{x+5}-4
|
f(x)=x^4-x^3-21x^2+x+20
|
f(x)=x^{4}-x^{3}-21x^{2}+x+20
|
f(t)=3t^2+5
|
f(t)=3t^{2}+5
|
f(x)=x^4+2x^3+5x+2
|
f(x)=x^{4}+2x^{3}+5x+2
|
y=x^2-5x+5
|
y=x^{2}-5x+5
|
f(x)=(x^2-13x+36)/(3-2x)
|
f(x)=\frac{x^{2}-13x+36}{3-2x}
|
asymptotes of f(x)=(4x^5)/(x^6-3)
|
asymptotes\:f(x)=\frac{4x^{5}}{x^{6}-3}
|
f(x)=(1-sqrt(1-x^2))/(x^2)
|
f(x)=\frac{1-\sqrt{1-x^{2}}}{x^{2}}
|
y=h(x+4)
|
y=h(x+4)
|
f(x)=x^3-2x-3
|
f(x)=x^{3}-2x-3
|
f(x)=x^3-2x+6
|
f(x)=x^{3}-2x+6
|
f(x)=(x^3)/(x^2+9)
|
f(x)=\frac{x^{3}}{x^{2}+9}
|
f(x)=-8x^2+32x-19
|
f(x)=-8x^{2}+32x-19
|
f(x)= x/(x^2+1/9)
|
f(x)=\frac{x}{x^{2}+\frac{1}{9}}
|
g(x)=3-8x
|
g(x)=3-8x
|
f(x)=((4x)/(8x-2))^2
|
f(x)=(\frac{4x}{8x-2})^{2}
|
f(x)=5sin(3x)+2cos(3x)
|
f(x)=5\sin(3x)+2\cos(3x)
|
domain of y=sqrt(1-x)
|
domain\:y=\sqrt{1-x}
|
f(x)=49-x^2
|
f(x)=49-x^{2}
|
y= 3/2 cos(2x)
|
y=\frac{3}{2}\cos(2x)
|
y=(sqrt(x^2+x+5))/(x^{ln(x))+6}
|
y=\frac{\sqrt{x^{2}+x+5}}{x^{\ln(x)}+6}
|
f(x)=(2x^3)/(x^2-4)
|
f(x)=\frac{2x^{3}}{x^{2}-4}
|
f(x)=(2+x-x^2)/((x-1)^2)
|
f(x)=\frac{2+x-x^{2}}{(x-1)^{2}}
|
y=sqrt(-2x+4)
|
y=\sqrt{-2x+4}
|
P(x)=x^4-6x^3+5x^2
|
P(x)=x^{4}-6x^{3}+5x^{2}
|
y=4tan(pi/2 x)
|
y=4\tan(\frac{π}{2}x)
|
f(x)=(5-x)^{2/3}
|
f(x)=(5-x)^{\frac{2}{3}}
|
F(x)=-2x+3
|
F(x)=-2x+3
|
inverse of y= 1/2 x-6
|
inverse\:y=\frac{1}{2}x-6
|
f(n)=1+e^{1/(n^2)}
|
f(n)=1+e^{\frac{1}{n^{2}}}
|
f(x)=10e^{x/2}cos(2x)-4
|
f(x)=10e^{\frac{x}{2}}\cos(2x)-4
|
f(x)=22-x^2,0<= x<= 1
|
f(x)=22-x^{2},0\le\:x\le\:1
|
f(q)=-32q-q^2+463
|
f(q)=-32q-q^{2}+463
|
y=2+2x
|
y=2+2x
|
f(x)=24sin^2(x)
|
f(x)=24\sin^{2}(x)
|
f(x)=sin(x)ln|cos(x)|
|
f(x)=\sin(x)\ln\left|\cos(x)\right|
|
g(x)=ln(x-x^2)
|
g(x)=\ln(x-x^{2})
|
f(x)=x^4+4x^3+9x^2+10x+6
|
f(x)=x^{4}+4x^{3}+9x^{2}+10x+6
|
f(x)=(x^2sqrt(3-x))
|
f(x)=(x^{2}\sqrt{3-x})
|
asymptotes of (x-3)/(x^2-3x-18)
|
asymptotes\:\frac{x-3}{x^{2}-3x-18}
|
y=e^{-2x^2}
|
y=e^{-2x^{2}}
|
y=5(x+4)^2+2
|
y=5(x+4)^{2}+2
|
f(x)=15x^{2/3}-10x
|
f(x)=15x^{\frac{2}{3}}-10x
|
f(x)={ax-1:x<= 1,3x^2+1:x>1}
|
f(x)=\left\{ax-1:x\le\:1,3x^{2}+1:x>1\right\}
|
f(x)=(4x+1)(6x+3)
|
f(x)=(4x+1)(6x+3)
|
f(x)=3sin(x)+cos(x)
|
f(x)=3\sin(x)+\cos(x)
|
f(x)=5+|2x-3|
|
f(x)=5+\left|2x-3\right|
|
f(x)=sqrt(-x^2+2+x)
|
f(x)=\sqrt{-x^{2}+2+x}
|
f(x)=sec(x)sin(x)
|
f(x)=\sec(x)\sin(x)
|
C(x)=4120x+29920
|
C(x)=4120x+29920
|
inflection points of f(x)=(2x^2)/(x^2-1)
|
inflection\:points\:f(x)=\frac{2x^{2}}{x^{2}-1}
|
F(x)=x^2+2x-8
|
F(x)=x^{2}+2x-8
|
g(t)=-(t-1)2+5
|
g(t)=-(t-1)2+5
|
f(x)=(8-2sqrt(x+11))/(1/2 x^2-1/2 x-10)
|
f(x)=\frac{8-2\sqrt{x+11}}{\frac{1}{2}x^{2}-\frac{1}{2}x-10}
|
f(x)=(x+3)/(x+4)
|
f(x)=\frac{x+3}{x+4}
|
y=cos(x),0<= x<= 2pi
|
y=\cos(x),0\le\:x\le\:2π
|
y=\sqrt[3]{x^6+3x}
|
y=\sqrt[3]{x^{6}+3x}
|
y=1+ln(-x)
|
y=1+\ln(-x)
|
f(x)=x^5(5-3x^3-2x^3)
|
f(x)=x^{5}(5-3x^{3}-2x^{3})
|
f(x)=-x^2+7x-2
|
f(x)=-x^{2}+7x-2
|
y=98x^2+30
|
y=98x^{2}+30
|