h(x)= 4/(x-5)
|
h(x)=\frac{4}{x-5}
|
f(x)=-0.25x^2+2x+10
|
f(x)=-0.25x^{2}+2x+10
|
f(x)=x^2-1.5x+0.36
|
f(x)=x^{2}-1.5x+0.36
|
f(x)=3x^3-4x^2-6x+1
|
f(x)=3x^{3}-4x^{2}-6x+1
|
y=2(x+6)^2+4
|
y=2(x+6)^{2}+4
|
y=3(1/3)^x
|
y=3(\frac{1}{3})^{x}
|
slope of y=-4x-3y
|
slope\:y=-4x-3y
|
f(x)=9x^8+9x^6-12x+7
|
f(x)=9x^{8}+9x^{6}-12x+7
|
f(y_{0})=y_{0}
|
f(y_{0})=y_{0}
|
f(x)=sqrt(3)x+2cos(x)
|
f(x)=\sqrt{3}x+2\cos(x)
|
f(x)=(x^2-3x-28)/(x+4)
|
f(x)=\frac{x^{2}-3x-28}{x+4}
|
P(x)=x^3-8
|
P(x)=x^{3}-8
|
f(x)=x*7
|
f(x)=x\cdot\:7
|
f(x)=x^2-6x,-1<= x<= 5
|
f(x)=x^{2}-6x,-1\le\:x\le\:5
|
f(x)=(2x+1)/5
|
f(x)=\frac{2x+1}{5}
|
f(a)=sqrt(1+a^2)
|
f(a)=\sqrt{1+a^{2}}
|
f(t)=2t^4+3t-e^{(-2t)}
|
f(t)=2t^{4}+3t-e^{(-2t)}
|
intercepts of f(x)= 1/4 (x+2)^2-9
|
intercepts\:f(x)=\frac{1}{4}(x+2)^{2}-9
|
f(n)=sin(n^2pi)
|
f(n)=\sin(n^{2}π)
|
y= 1/2 x^2-x
|
y=\frac{1}{2}x^{2}-x
|
f(x)=2x^3+3x^2+x-x-56
|
f(x)=2x^{3}+3x^{2}+x-x-56
|
f(x)=-2x(x-1)(x-8)
|
f(x)=-2x(x-1)(x-8)
|
y=(x^3+1)/x
|
y=\frac{x^{3}+1}{x}
|
f(x)=-2x(x-1)(x-2)
|
f(x)=-2x(x-1)(x-2)
|
f(x)=(2x+1)/(3x+5)
|
f(x)=\frac{2x+1}{3x+5}
|
f(x)=sin(x^3+1)
|
f(x)=\sin(x^{3}+1)
|
f(x)=(2-x)/(sqrt(x-1))
|
f(x)=\frac{2-x}{\sqrt{x-1}}
|
y=cos(sqrt(x^3+x^4))
|
y=\cos(\sqrt{x^{3}+x^{4}})
|
range of f(x)=sqrt(5x-20)
|
range\:f(x)=\sqrt{5x-20}
|
f(x)=x 3/2
|
f(x)=x\frac{3}{2}
|
y=e^{-x}+4
|
y=e^{-x}+4
|
y=-2(x-4)^2-3
|
y=-2(x-4)^{2}-3
|
f(x)=ln((x+3)/(x-3))
|
f(x)=\ln(\frac{x+3}{x-3})
|
f(x)=(x^{12})/(x^{-2)}
|
f(x)=\frac{x^{12}}{x^{-2}}
|
f(x)=arctan(1/(x^2))
|
f(x)=\arctan(\frac{1}{x^{2}})
|
f(x)=-6x\sqrt[5]{2x+6}
|
f(x)=-6x\sqrt[5]{2x+6}
|
|z-7|-|z-9|,z<7
|
\left|z-7\right|-\left|z-9\right|,z<7
|
f(m)=3m^3
|
f(m)=3m^{3}
|
r(θ)= 1/θ
|
r(θ)=\frac{1}{θ}
|
slope intercept of 4x+y=7
|
slope\:intercept\:4x+y=7
|
f(x)=4.5x-2.25x^2+0.75
|
f(x)=4.5x-2.25x^{2}+0.75
|
f(x)=(x^3)/(2(x+1)^2)
|
f(x)=\frac{x^{3}}{2(x+1)^{2}}
|
f(x)=(x^2-3)/x
|
f(x)=\frac{x^{2}-3}{x}
|
f(x)=(\sqrt[5]{2x^4})/4
|
f(x)=\frac{\sqrt[5]{2x^{4}}}{4}
|
f(x)=(x+1)2-7
|
f(x)=(x+1)2-7
|
f(x)=(3x^2+1)/(x^2-1)
|
f(x)=\frac{3x^{2}+1}{x^{2}-1}
|
f(n)=\sqrt[2n]{\sqrt[n]{3n^2}}
|
f(n)=\sqrt[2n]{\sqrt[n]{3n^{2}}}
|
f(x)=(3tan(x)+2sec(x))/(2tan(x)+3sec(x))
|
f(x)=\frac{3\tan(x)+2\sec(x)}{2\tan(x)+3\sec(x)}
|
f(x)=log_{4/5}(x)
|
f(x)=\log_{\frac{4}{5}}(x)
|
f(x)=sinh(6x)
|
f(x)=\sinh(6x)
|
domain of f(x)=sqrt(2x-3)
|
domain\:f(x)=\sqrt{2x-3}
|
f(x)=2log_{10}(x+2)+1
|
f(x)=2\log_{10}(x+2)+1
|
f(x)=3x^2+x-7
|
f(x)=3x^{2}+x-7
|
f(t)=6t^4
|
f(t)=6t^{4}
|
f(θ)=2sin^2(θ/2)
|
f(θ)=2\sin^{2}(\frac{θ}{2})
|
f(x)=27+113*e^{0.5*ln(73/113)x}
|
f(x)=27+113\cdot\:e^{0.5\cdot\:\ln(\frac{73}{113})x}
|
f(y)=sqrt(1+y^4)
|
f(y)=\sqrt{1+y^{4}}
|
f(x)=(x-5)/(x+1)
|
f(x)=\frac{x-5}{x+1}
|
f(x)=(6-3x)/2
|
f(x)=\frac{6-3x}{2}
|
f(x)=6x^3+4
|
f(x)=6x^{3}+4
|
f(x)=(x-5)/(x+7)
|
f(x)=\frac{x-5}{x+7}
|
intercepts of sqrt((x+4)/(2-x))
|
intercepts\:\sqrt{\frac{x+4}{2-x}}
|
f(x)=5-8x-x^2
|
f(x)=5-8x-x^{2}
|
y=(ln(x))/(e^x)
|
y=\frac{\ln(x)}{e^{x}}
|
h(x)=(x-1)2-9
|
h(x)=(x-1)2-9
|
f(x)=x^3+x+5
|
f(x)=x^{3}+x+5
|
f(x)=log_{10}(|1-x^2|)
|
f(x)=\log_{10}(\left|1-x^{2}\right|)
|
f(t)=e^2t(sin(t)+cos(t))^2
|
f(t)=e^{2}t(\sin(t)+\cos(t))^{2}
|
y=sec(3)x^2
|
y=\sec(3)x^{2}
|
f(x)=-4(x-3)^2(x+2)^2
|
f(x)=-4(x-3)^{2}(x+2)^{2}
|
f(x)=cos(4x)*tan(4x)
|
f(x)=\cos(4x)\cdot\:\tan(4x)
|
y=6|x|
|
y=6\left|x\right|
|
domain of f(x)=(120+4x)/x
|
domain\:f(x)=\frac{120+4x}{x}
|
f(x)={-x+4:x<1,2x+1:x>= 1}
|
f(x)=\left\{-x+4:x<1,2x+1:x\ge\:1\right\}
|
y=2x^3+4x^2+2
|
y=2x^{3}+4x^{2}+2
|
y=(2x-1)/x
|
y=\frac{2x-1}{x}
|
y=x^2sin(pi)x
|
y=x^{2}\sin(π)x
|
u(x)=((2x+3))/((x-1))
|
u(x)=\frac{(2x+3)}{(x-1)}
|
f(x)=sqrt(x+3)+4
|
f(x)=\sqrt{x+3}+4
|
y= 1/2 x^3+2
|
y=\frac{1}{2}x^{3}+2
|
f(x)=(sqrt(x))/(1+x^2)
|
f(x)=\frac{\sqrt{x}}{1+x^{2}}
|
y=-x^2-3x+8
|
y=-x^{2}-3x+8
|
f(x)=(3x-1)/(x+3)
|
f(x)=\frac{3x-1}{x+3}
|
domain of f(x)=(x+5)/(15+sqrt(x^2-64))
|
domain\:f(x)=\frac{x+5}{15+\sqrt{x^{2}-64}}
|
f(x)=(|x^2|)/(x^2)
|
f(x)=\frac{\left|x^{2}\right|}{x^{2}}
|
f(x)=x^2-18x+63
|
f(x)=x^{2}-18x+63
|
f(x)=5^{x+5}
|
f(x)=5^{x+5}
|
-x^2+4x
|
-x^{2}+4x
|
f(x)= 1/(3x^2-27)
|
f(x)=\frac{1}{3x^{2}-27}
|
y=936x+1840
|
y=936x+1840
|
f(x)=2x^3-15x^2-122x+65
|
f(x)=2x^{3}-15x^{2}-122x+65
|
f(p)=sin(2p)
|
f(p)=\sin(2p)
|
y=3x^2+2x+2
|
y=3x^{2}+2x+2
|
y= 1/(x^7)
|
y=\frac{1}{x^{7}}
|
distance (-5,1)(7,8)
|
distance\:(-5,1)(7,8)
|
f(x)=-(1/4)^x-1
|
f(x)=-(\frac{1}{4})^{x}-1
|
f(x)=-sqrt(2x)
|
f(x)=-\sqrt{2x}
|
f(x)=(3x+1)/7
|
f(x)=\frac{3x+1}{7}
|
f(x)=(3+x)/2
|
f(x)=\frac{3+x}{2}
|
f(x)=x^2-5x-11
|
f(x)=x^{2}-5x-11
|