parity sqrt(tan(x))(sec(x))^4
|
parity\:\sqrt{\tan(x)}(\sec(x))^{4}
|
slope of 2x+18y-9=0
|
slope\:2x+18y-9=0
|
extreme points of f(x)=(e^x)/(x-4)
|
extreme\:points\:f(x)=\frac{e^{x}}{x-4}
|
parity f(x)=7x^3
|
parity\:f(x)=7x^{3}
|
asymptotes of f(x)=log_{3}(x-2)+4
|
asymptotes\:f(x)=\log_{3}(x-2)+4
|
domain of f(x)=(1/(sqrt(x)))^2-4
|
domain\:f(x)=(\frac{1}{\sqrt{x}})^{2}-4
|
domain of h(x)=sqrt(2x-5)
|
domain\:h(x)=\sqrt{2x-5}
|
asymptotes of f(x)=tan(x-(pi)/4)
|
asymptotes\:f(x)=\tan(x-\frac{\pi}{4})
|
domain of 2sqrt(x+4)-1
|
domain\:2\sqrt{x+4}-1
|
extreme points of sqrt(81-x^4)
|
extreme\:points\:\sqrt{81-x^{4}}
|
extreme points of f(x)=0.05x+20+(125)/x
|
extreme\:points\:f(x)=0.05x+20+\frac{125}{x}
|
slope intercept of 4x-y=-1
|
slope\:intercept\:4x-y=-1
|
parallel 4x-7=-3
|
parallel\:4x-7=-3
|
parallel y=5x+13
|
parallel\:y=5x+13
|
intercepts of g(x)=9x-13
|
intercepts\:g(x)=9x-13
|
f(x)= 1/(x+3)
|
f(x)=\frac{1}{x+3}
|
domain of f(x)=y=3+sqrt(x)
|
domain\:f(x)=y=3+\sqrt{x}
|
range of f(x)=x^2-8x+15
|
range\:f(x)=x^{2}-8x+15
|
range of y=(2x+3)/(4x+1)
|
range\:y=\frac{2x+3}{4x+1}
|
line (6,5),(3,5)
|
line\:(6,5),(3,5)
|
extreme points of y=(x^2+1)/(x+1)
|
extreme\:points\:y=\frac{x^{2}+1}{x+1}
|
domain of f(x)=(x^2)/(x+2)
|
domain\:f(x)=\frac{x^{2}}{x+2}
|
extreme points of y=sqrt(2x-x^2)
|
extreme\:points\:y=\sqrt{2x-x^{2}}
|
intercepts of f(x)=y=-1
|
intercepts\:f(x)=y=-1
|
inverse of f(x)=(x-1)/(x-2)
|
inverse\:f(x)=\frac{x-1}{x-2}
|
inverse of 110*3.1^x
|
inverse\:110\cdot\:3.1^{x}
|
range of 8/3 x-3
|
range\:\frac{8}{3}x-3
|
critical points of f(x)=x+2sin(x)
|
critical\:points\:f(x)=x+2\sin(x)
|
critical points of f(x)=4x^2(5^x)
|
critical\:points\:f(x)=4x^{2}(5^{x})
|
extreme points of f(x)=x^3-3x^2+8
|
extreme\:points\:f(x)=x^{3}-3x^{2}+8
|
distance (6,5)(2,0)
|
distance\:(6,5)(2,0)
|
extreme points of f(x)=2x^4-8x^3
|
extreme\:points\:f(x)=2x^{4}-8x^{3}
|
critical points of f(x)=-5x^2+40x
|
critical\:points\:f(x)=-5x^{2}+40x
|
intercepts of y=x^2-x-42
|
intercepts\:y=x^{2}-x-42
|
line (5,2)(-3,-4)
|
line\:(5,2)(-3,-4)
|
domain of f(x)=-1/3 sqrt(x)
|
domain\:f(x)=-\frac{1}{3}\sqrt{x}
|
parallel 2x-3y=9,\at (2,-1)
|
parallel\:2x-3y=9,\at\:(2,-1)
|
domain of 2+1/x
|
domain\:2+\frac{1}{x}
|
domain of y=sqrt(x+6)
|
domain\:y=\sqrt{x+6}
|
asymptotes of f(x)=(x^3-27)/(x^2-4x+3)
|
asymptotes\:f(x)=\frac{x^{3}-27}{x^{2}-4x+3}
|
domain of f(x)=sqrt(4-9x)
|
domain\:f(x)=\sqrt{4-9x}
|
asymptotes of f(x)=((x+2)(x-5))/(x(x+2))
|
asymptotes\:f(x)=\frac{(x+2)(x-5)}{x(x+2)}
|
domain of f(x)=sqrt(13-x)
|
domain\:f(x)=\sqrt{13-x}
|
domain of f(x)=-8x
|
domain\:f(x)=-8x
|
asymptotes of (x^3+8)/(x^2+3x)
|
asymptotes\:\frac{x^{3}+8}{x^{2}+3x}
|
symmetry y=-x^2-7
|
symmetry\:y=-x^{2}-7
|
extreme points of csc(x)
|
extreme\:points\:\csc(x)
|
domain of f(x)= x/(x+6)
|
domain\:f(x)=\frac{x}{x+6}
|
extreme points of f(x)=3x^3-9x+1
|
extreme\:points\:f(x)=3x^{3}-9x+1
|
domain of f(x)=ln(|x|)
|
domain\:f(x)=\ln(|x|)
|
monotone intervals f(x)=-4x^2+6x+1
|
monotone\:intervals\:f(x)=-4x^{2}+6x+1
|
extreme points of f(x)=x^3e^x
|
extreme\:points\:f(x)=x^{3}e^{x}
|
parity sin(2x)
|
parity\:\sin(2x)
|
f(x)=2x+3
|
f(x)=2x+3
|
slope intercept of 3x-4y=-12
|
slope\:intercept\:3x-4y=-12
|
midpoint (7,1)(16,-12)
|
midpoint\:(7,1)(16,-12)
|
parity ln(1+sin(t))dt
|
parity\:\ln(1+\sin(t))dt
|
symmetry (x^3)/(x^2-4)
|
symmetry\:\frac{x^{3}}{x^{2}-4}
|
domain of sin(2x)
|
domain\:\sin(2x)
|
periodicity of-4cos(2pi r)+3
|
periodicity\:-4\cos(2\pi\:r)+3
|
asymptotes of (2x^2-6x+4)/(x^2-5x+4)
|
asymptotes\:\frac{2x^{2}-6x+4}{x^{2}-5x+4}
|
inverse of 3-6x
|
inverse\:3-6x
|
inverse of x/(x-2)
|
inverse\:\frac{x}{x-2}
|
domain of 2
|
domain\:2
|
parallel 5y=3x+2
|
parallel\:5y=3x+2
|
inverse of f(x)=x^2+6x+15
|
inverse\:f(x)=x^{2}+6x+15
|
monotone intervals 2646-0.18x^3
|
monotone\:intervals\:2646-0.18x^{3}
|
domain of f(x)=(sqrt(x))/(x^2+8x+15)
|
domain\:f(x)=\frac{\sqrt{x}}{x^{2}+8x+15}
|
asymptotes of f(x)=(1-3x)/(2-x)
|
asymptotes\:f(x)=\frac{1-3x}{2-x}
|
line g(x)= 3/4 x-1/4
|
line\:g(x)=\frac{3}{4}x-\frac{1}{4}
|
extreme points of f(x)=7x^2ln(x/2)
|
extreme\:points\:f(x)=7x^{2}\ln(\frac{x}{2})
|
domain of f(x)=-2*|x^2-4x+1|
|
domain\:f(x)=-2\cdot\:|x^{2}-4x+1|
|
domain of f(x)=arccsc(x+4)
|
domain\:f(x)=\arccsc(x+4)
|
critical points of (e^x-e^{-x})/6
|
critical\:points\:\frac{e^{x}-e^{-x}}{6}
|
domain of (9x)/(x-7)
|
domain\:\frac{9x}{x-7}
|
inverse of f(x)=log_{5}(x+3)
|
inverse\:f(x)=\log_{5}(x+3)
|
extreme points of f(x)=9sin(x)+9cos(x)
|
extreme\:points\:f(x)=9\sin(x)+9\cos(x)
|
domain of 3*5^x
|
domain\:3\cdot\:5^{x}
|
midpoint (5,4)(5,-3)
|
midpoint\:(5,4)(5,-3)
|
slope intercept of-x-3y=21
|
slope\:intercept\:-x-3y=21
|
domain of 1/(3x-12)
|
domain\:\frac{1}{3x-12}
|
inflection points of 3x^5-5x^4-1
|
inflection\:points\:3x^{5}-5x^{4}-1
|
domain of f(x)=sqrt(-5x)
|
domain\:f(x)=\sqrt{-5x}
|
slope intercept of 18x+3y=-21
|
slope\:intercept\:18x+3y=-21
|
parity 3cos(x)
|
parity\:3\cos(x)
|
inverse of (x-2)/(3x+1)
|
inverse\:\frac{x-2}{3x+1}
|
asymptotes of f(x)=x+3
|
asymptotes\:f(x)=x+3
|
inverse of f(x)=(x^2-4)/(4x^2)
|
inverse\:f(x)=\frac{x^{2}-4}{4x^{2}}
|
range of f(x)=y=x^2+7
|
range\:f(x)=y=x^{2}+7
|
shift f(x)=4-2sin(3x-pi)
|
shift\:f(x)=4-2\sin(3x-\pi)
|
inverse of f(x)=y=40^{-(x+5.5)}+2.35
|
inverse\:f(x)=y=40^{-(x+5.5)}+2.35
|
domain of f(x)=(x-3)/(x^2+4)
|
domain\:f(x)=\frac{x-3}{x^{2}+4}
|
domain of y=-1/3 x^2+4x+11
|
domain\:y=-\frac{1}{3}x^{2}+4x+11
|
symmetry x^2+6x+6
|
symmetry\:x^{2}+6x+6
|
asymptotes of f(x)=(x^2-8x+16)/(x-4)
|
asymptotes\:f(x)=\frac{x^{2}-8x+16}{x-4}
|
line (0,0)(-1,7)
|
line\:(0,0)(-1,7)
|
critical points of x(sqrt(100-x^2))
|
critical\:points\:x(\sqrt{100-x^{2}})
|
midpoint (-2,1)(1,-1)
|
midpoint\:(-2,1)(1,-1)
|
intercepts of f(x)=-x^2(x-2)(x+4)
|
intercepts\:f(x)=-x^{2}(x-2)(x+4)
|
range of 3cos(x)+1
|
range\:3\cos(x)+1
|