inverse of f(x)=(1-sqrt(y))/(1+sqrt(y))
|
inverse\:f(x)=\frac{1-\sqrt{y}}{1+\sqrt{y}}
|
domain of (x^2-x)/(x^2-1)
|
domain\:\frac{x^{2}-x}{x^{2}-1}
|
intercepts of f(x)=(x+1)^2-1
|
intercepts\:f(x)=(x+1)^{2}-1
|
inverse of x^2+3
|
inverse\:x^{2}+3
|
domain of f(x)=sqrt(x^2+5x+6)
|
domain\:f(x)=\sqrt{x^{2}+5x+6}
|
parity f(x)=1.1011…E13
|
parity\:f(x)=1.1011…E13
|
domain of f(x)= 4/(x+2)+sqrt(x)
|
domain\:f(x)=\frac{4}{x+2}+\sqrt{x}
|
amplitude of f(x)=5cos(4x)
|
amplitude\:f(x)=5\cos(4x)
|
midpoint (6,3)(-1,-5)
|
midpoint\:(6,3)(-1,-5)
|
critical points of f(x)=6x^2-6
|
critical\:points\:f(x)=6x^{2}-6
|
inflection points of x^3-9x^2+15x
|
inflection\:points\:x^{3}-9x^{2}+15x
|
parity (4x)/(x^3-x^2+1)
|
parity\:\frac{4x}{x^{3}-x^{2}+1}
|
domain of |3x+1|+1-x
|
domain\:|3x+1|+1-x
|
range of sin(7x)
|
range\:\sin(7x)
|
y= 1/2 x^2
|
y=\frac{1}{2}x^{2}
|
inverse of f(y)=3x^2+3
|
inverse\:f(y)=3x^{2}+3
|
parity f(x)=tan(x)
|
parity\:f(x)=\tan(x)
|
inverse of g(x)=2x-3
|
inverse\:g(x)=2x-3
|
parity f(x)= 3/(x^2)
|
parity\:f(x)=\frac{3}{x^{2}}
|
parity arctan(cot(theta))
|
parity\:\arctan(\cot(\theta))
|
line (0,5),(1,10)
|
line\:(0,5),(1,10)
|
range of sqrt(x+3)
|
range\:\sqrt{x+3}
|
extreme points of y=2sin(5x-30)+4
|
extreme\:points\:y=2\sin(5x-30)+4
|
asymptotes of f(x)=(x+1)/(x-1)
|
asymptotes\:f(x)=\frac{x+1}{x-1}
|
inverse of f(x)=(5x-5)/4
|
inverse\:f(x)=\frac{5x-5}{4}
|
parallel y= 1/2 x+4
|
parallel\:y=\frac{1}{2}x+4
|
domain of 3(x+1)
|
domain\:3(x+1)
|
domain of y=x^2-4x+7
|
domain\:y=x^{2}-4x+7
|
perpendicular y=8x-sqrt(3)-(8pi)/3
|
perpendicular\:y=8x-\sqrt{3}-\frac{8\pi}{3}
|
domain of f(x)=sqrt(x^2+6)
|
domain\:f(x)=\sqrt{x^{2}+6}
|
extreme points of f(x,y)=x+2
|
extreme\:points\:f(x,y)=x+2
|
asymptotes of f(x)= x/(x(x-5))
|
asymptotes\:f(x)=\frac{x}{x(x-5)}
|
inverse of y=x^7+3
|
inverse\:y=x^{7}+3
|
range of f(x)=3(2)^x-4
|
range\:f(x)=3(2)^{x}-4
|
monotone intervals f(x)=6x^4-36x^2
|
monotone\:intervals\:f(x)=6x^{4}-36x^{2}
|
slope intercept of 2x-y=-3
|
slope\:intercept\:2x-y=-3
|
slope of y=-x+4
|
slope\:y=-x+4
|
inverse of f(x)=x^2+2x-3,x<=-1
|
inverse\:f(x)=x^{2}+2x-3,x\le\:-1
|
midpoint (-3,5)(7,-9)
|
midpoint\:(-3,5)(7,-9)
|
domain of 2x-10
|
domain\:2x-10
|
intercepts of y=2x^2+12x-2
|
intercepts\:y=2x^{2}+12x-2
|
inverse of f(x)=(4x)/(9+x)
|
inverse\:f(x)=\frac{4x}{9+x}
|
midpoint (1,1)(6,13)
|
midpoint\:(1,1)(6,13)
|
domain of f(x)=x<-5
|
domain\:f(x)=x\lt\:-5
|
midpoint (-3,-4)(4,6)
|
midpoint\:(-3,-4)(4,6)
|
inverse of ln((2-x)/(x+3))
|
inverse\:\ln(\frac{2-x}{x+3})
|
inverse of f(x)=(x+7)/2
|
inverse\:f(x)=\frac{x+7}{2}
|
slope of y= 1/2 x-3
|
slope\:y=\frac{1}{2}x-3
|
parity sec(3thetacot(3theta))
|
parity\:\sec(3\theta\cot(3\theta))
|
inverse of f(x)=(4x+3)/(1-8x)
|
inverse\:f(x)=\frac{4x+3}{1-8x}
|
domain of f(x)=(x-9)^2
|
domain\:f(x)=(x-9)^{2}
|
range of 16-(20x+15)^2
|
range\:16-(20x+15)^{2}
|
intercepts of (x^2)/(x-1)
|
intercepts\:\frac{x^{2}}{x-1}
|
inverse of h(x)=5(x-9)
|
inverse\:h(x)=5(x-9)
|
range of x/(2x^2+4)
|
range\:\frac{x}{2x^{2}+4}
|
inverse of f(x)=3sqrt(x)
|
inverse\:f(x)=3\sqrt{x}
|
domain of x^2-6x+7
|
domain\:x^{2}-6x+7
|
domain of f(x)=-sqrt(x+2)+3
|
domain\:f(x)=-\sqrt{x+2}+3
|
f(x)= 1/x
|
f(x)=\frac{1}{x}
|
critical points of f(x)=sin^2(7x)
|
critical\:points\:f(x)=\sin^{2}(7x)
|
inverse of (3x-7)^3
|
inverse\:(3x-7)^{3}
|
inverse of 5log_{4}(x)
|
inverse\:5\log_{4}(x)
|
asymptotes of f(x)=(x^3)/(x^2-4)
|
asymptotes\:f(x)=\frac{x^{3}}{x^{2}-4}
|
parity f(x)= 3/x
|
parity\:f(x)=\frac{3}{x}
|
domain of f(x)=ln(t+4)
|
domain\:f(x)=\ln(t+4)
|
line (-4,-3)(5,-1)
|
line\:(-4,-3)(5,-1)
|
range of (5-8x)/(2x)
|
range\:\frac{5-8x}{2x}
|
domain of f(x)=x^4-6x
|
domain\:f(x)=x^{4}-6x
|
inverse of f(x)= 3/(x-1)
|
inverse\:f(x)=\frac{3}{x-1}
|
extreme points of f(x)=3x^5-3x^3
|
extreme\:points\:f(x)=3x^{5}-3x^{3}
|
symmetry y-4=(x-2)^2
|
symmetry\:y-4=(x-2)^{2}
|
asymptotes of x^4-x^2sin(x)+1
|
asymptotes\:x^{4}-x^{2}\sin(x)+1
|
parallel 6x+3y=10(-13,-8)
|
parallel\:6x+3y=10(-13,-8)
|
inverse of (5x+2)/7
|
inverse\:\frac{5x+2}{7}
|
asymptotes of f(x)=(4x-3)/(6-2x)
|
asymptotes\:f(x)=\frac{4x-3}{6-2x}
|
line (2,4),(0,6)
|
line\:(2,4),(0,6)
|
asymptotes of f(x)=(x-3)/(x^2-7x+12)
|
asymptotes\:f(x)=\frac{x-3}{x^{2}-7x+12}
|
extreme points of f(x)= x/(x^2+2)
|
extreme\:points\:f(x)=\frac{x}{x^{2}+2}
|
line (-2,1),(-8,4)
|
line\:(-2,1),(-8,4)
|
inverse of f(x)=-2/3 x+6
|
inverse\:f(x)=-\frac{2}{3}x+6
|
critical points of 4x-x^3
|
critical\:points\:4x-x^{3}
|
asymptotes of f(x)=(4x+9)/(3x-2)
|
asymptotes\:f(x)=\frac{4x+9}{3x-2}
|
line (-8,)1
|
line\:(-8,)1
|
line (4,48),(-3,27)
|
line\:(4,48),(-3,27)
|
slope of 6x+8y=-9
|
slope\:6x+8y=-9
|
parity sec(theta)dtheta
|
parity\:\sec(\theta)d\theta
|
domain of f(x)=6x^2
|
domain\:f(x)=6x^{2}
|
asymptotes of f(x)=(-5x)/(4x+10)
|
asymptotes\:f(x)=\frac{-5x}{4x+10}
|
inverse of f(x)=((2x-1))/(x+4)
|
inverse\:f(x)=\frac{(2x-1)}{x+4}
|
domain of x+12
|
domain\:x+12
|
domain of f(x)= 4/(sqrt(x+5))
|
domain\:f(x)=\frac{4}{\sqrt{x+5}}
|
extreme points of f(x)=-2-x^{2/3}
|
extreme\:points\:f(x)=-2-x^{\frac{2}{3}}
|
critical points of x^3+x-9
|
critical\:points\:x^{3}+x-9
|
intercepts of y= 1/(2c)-1/(2c^2)
|
intercepts\:y=\frac{1}{2c}-\frac{1}{2c^{2}}
|
range of f(x)=-6x^2+10x-7
|
range\:f(x)=-6x^{2}+10x-7
|
asymptotes of (x^3-1)/(x^2+2x-3)
|
asymptotes\:\frac{x^{3}-1}{x^{2}+2x-3}
|
midpoint (-5/2 , 1/2)(-15/2 ,-13/2)
|
midpoint\:(-\frac{5}{2},\frac{1}{2})(-\frac{15}{2},-\frac{13}{2})
|
extreme points of \sqrt[3]{x}(x+4)
|
extreme\:points\:\sqrt[3]{x}(x+4)
|
inflection points of f(x)=3x^{2/3}-2x
|
inflection\:points\:f(x)=3x^{\frac{2}{3}}-2x
|
domain of 4-x^2
|
domain\:4-x^{2}
|