domain of f(x)=(x+5)/(x^3-x^2-4x+4)
|
domain\:f(x)=\frac{x+5}{x^{3}-x^{2}-4x+4}
|
inverse of f(x)=x+5
|
inverse\:f(x)=x+5
|
intercepts of f(x)=(x^2)/4
|
intercepts\:f(x)=\frac{x^{2}}{4}
|
inflection points of (x+1)/(x+2)
|
inflection\:points\:\frac{x+1}{x+2}
|
extreme points of f(x)=x^4-50x^2+625
|
extreme\:points\:f(x)=x^{4}-50x^{2}+625
|
domain of 12x+2
|
domain\:12x+2
|
inverse of f(x)=2+sqrt(x-1)
|
inverse\:f(x)=2+\sqrt{x-1}
|
inverse of f(x)=sec(x+2)
|
inverse\:f(x)=\sec(x+2)
|
asymptotes of y=(2x-1)/(x+2)
|
asymptotes\:y=\frac{2x-1}{x+2}
|
amplitude of y=-1/5 cos(2pi x)+5
|
amplitude\:y=-\frac{1}{5}\cos(2\pi\:x)+5
|
domain of f(x)=3x^2+x+5
|
domain\:f(x)=3x^{2}+x+5
|
domain of 3x^2+sqrt(x-5)
|
domain\:3x^{2}+\sqrt{x-5}
|
inverse of (x-4)/(x+2)
|
inverse\:\frac{x-4}{x+2}
|
symmetry y=-7x
|
symmetry\:y=-7x
|
extreme points of f(x)=2+3/(1+(x+1)^2)
|
extreme\:points\:f(x)=2+\frac{3}{1+(x+1)^{2}}
|
line y=-3x
|
line\:y=-3x
|
critical points of-3x^2+12x
|
critical\:points\:-3x^{2}+12x
|
asymptotes of f(x)=(x-3)/(x+1)
|
asymptotes\:f(x)=\frac{x-3}{x+1}
|
parity 1/(a^{1/n)}
|
parity\:\frac{1}{a^{\frac{1}{n}}}
|
extreme points of tan^2(x)
|
extreme\:points\:\tan^{2}(x)
|
periodicity of e^{sqrt(2)cos(x)}
|
periodicity\:e^{\sqrt{2}\cos(x)}
|
inverse of f(4)=2x-10
|
inverse\:f(4)=2x-10
|
domain of f(x)= 4/(ln(x^2-1))
|
domain\:f(x)=\frac{4}{\ln(x^{2}-1)}
|
asymptotes of f(x)=(x^3+1)/(x^2+2)
|
asymptotes\:f(x)=\frac{x^{3}+1}{x^{2}+2}
|
distance (3,2)(-10,4)
|
distance\:(3,2)(-10,4)
|
inverse of f(x)=(x+2)/(x-1)
|
inverse\:f(x)=\frac{x+2}{x-1}
|
slope intercept of-x+2y=6
|
slope\:intercept\:-x+2y=6
|
asymptotes of f(x)=(-3x^2-12x)/(5x^2)
|
asymptotes\:f(x)=\frac{-3x^{2}-12x}{5x^{2}}
|
extreme points of f(x)=4x^3-80x^2+400x
|
extreme\:points\:f(x)=4x^{3}-80x^{2}+400x
|
extreme points of f(x)= 1/(x^2-1)
|
extreme\:points\:f(x)=\frac{1}{x^{2}-1}
|
extreme points of f(x)=-((x-5))/(e^x)
|
extreme\:points\:f(x)=-\frac{(x-5)}{e^{x}}
|
inverse of y=x
|
inverse\:y=x
|
inverse of f(x)=sqrt(x^3-27)-1
|
inverse\:f(x)=\sqrt{x^{3}-27}-1
|
domain of f(x)=(x^2+x)/x
|
domain\:f(x)=\frac{x^{2}+x}{x}
|
extreme points of (4-x^2)/(x^2)
|
extreme\:points\:\frac{4-x^{2}}{x^{2}}
|
parity f(x)=x^6+x
|
parity\:f(x)=x^{6}+x
|
slope intercept of 2x-3y=-1
|
slope\:intercept\:2x-3y=-1
|
vertex h(t)=4t^2
|
vertex\:h(t)=4t^{2}
|
extreme points of f(x)=19x^4-114x^2
|
extreme\:points\:f(x)=19x^{4}-114x^{2}
|
inverse of f(x)=(3+4x)/(3x)
|
inverse\:f(x)=\frac{3+4x}{3x}
|
intercepts of f(x)=(x+3)^2
|
intercepts\:f(x)=(x+3)^{2}
|
midpoint (-3,-5)(-0.5,0)
|
midpoint\:(-3,-5)(-0.5,0)
|
domain of f(x)= 5/(sqrt(x+9))
|
domain\:f(x)=\frac{5}{\sqrt{x+9}}
|
domain of f(x)=|2x-3|
|
domain\:f(x)=|2x-3|
|
slope of 3x+y=9
|
slope\:3x+y=9
|
domain of f(x)=-\sqrt[3]{4x}
|
domain\:f(x)=-\sqrt[3]{4x}
|
inverse of f(x)=7x^3+8
|
inverse\:f(x)=7x^{3}+8
|
range of sqrt(ln(1/x-3))
|
range\:\sqrt{\ln(\frac{1}{x}-3)}
|
intercepts of-x^2+10x-21
|
intercepts\:-x^{2}+10x-21
|
midpoint (-6,-2)(3,-8)
|
midpoint\:(-6,-2)(3,-8)
|
critical points of 3x^2-18x+15
|
critical\:points\:3x^{2}-18x+15
|
asymptotes of f(x)=(12x^2)/(4x^2+1)
|
asymptotes\:f(x)=\frac{12x^{2}}{4x^{2}+1}
|
inverse of f(x)=(x+1)/(x-1)
|
inverse\:f(x)=\frac{x+1}{x-1}
|
domain of sqrt(5-x)
|
domain\:\sqrt{5-x}
|
amplitude of f(x)=cos(x)+4
|
amplitude\:f(x)=\cos(x)+4
|
inverse of f(x)=\sqrt[3]{4-y}+2
|
inverse\:f(x)=\sqrt[3]{4-y}+2
|
domain of 1/((x-2)^2)
|
domain\:\frac{1}{(x-2)^{2}}
|
inverse of (x^2+x+1)/x
|
inverse\:\frac{x^{2}+x+1}{x}
|
distance (0,-1)(-5,-2)
|
distance\:(0,-1)(-5,-2)
|
amplitude of f(x)=3sin(4x)
|
amplitude\:f(x)=3\sin(4x)
|
range of (x^2+3x)/(x^2-x)
|
range\:\frac{x^{2}+3x}{x^{2}-x}
|
inflection points of 7/(3x^2)
|
inflection\:points\:\frac{7}{3x^{2}}
|
inverse of f(x)=(x+1)/9
|
inverse\:f(x)=\frac{x+1}{9}
|
asymptotes of f(x)=(x^2-8x+16)/(x^3-6x^2)
|
asymptotes\:f(x)=\frac{x^{2}-8x+16}{x^{3}-6x^{2}}
|
inverse of log_{4}(x+2)+1
|
inverse\:\log_{4}(x+2)+1
|
range of f(x)=x/(x+4)
|
range\:f(x)=x/(x+4)
|
domain of f(x)=(sqrt(x-4))/(sqrt(x-6))
|
domain\:f(x)=\frac{\sqrt{x-4}}{\sqrt{x-6}}
|
range of 1/(x-6)
|
range\:\frac{1}{x-6}
|
domain of f(x)=2x^3-5
|
domain\:f(x)=2x^{3}-5
|
amplitude of f(x)=2+4sin(3x+(pi)/2)
|
amplitude\:f(x)=2+4\sin(3x+\frac{\pi}{2})
|
domain of f(x)= 7/(x^2-49)
|
domain\:f(x)=\frac{7}{x^{2}-49}
|
domain of 2/(x^2+4x+3)
|
domain\:\frac{2}{x^{2}+4x+3}
|
inverse of (x+1)/(x+6)
|
inverse\:\frac{x+1}{x+6}
|
range of f(x)=sin(2x)
|
range\:f(x)=\sin(2x)
|
inverse of f(x)=5sqrt(x+9)+1
|
inverse\:f(x)=5\sqrt{x+9}+1
|
inverse of f(x)= 1/9 (2x(x+1)-x-10)+1
|
inverse\:f(x)=\frac{1}{9}(2x(x+1)-x-10)+1
|
inverse of f(x)=-3^{x-1}+6
|
inverse\:f(x)=-3^{x-1}+6
|
inverse of f(x)=5x^5-9
|
inverse\:f(x)=5x^{5}-9
|
asymptotes of f(x)=((1+e^{-x}))/(5e^x)
|
asymptotes\:f(x)=\frac{(1+e^{-x})}{5e^{x}}
|
domain of f(x)= 1/(x^2-5)
|
domain\:f(x)=\frac{1}{x^{2}-5}
|
domain of f(x)=5-2x
|
domain\:f(x)=5-2x
|
parallel y= 5/4 x-7
|
parallel\:y=\frac{5}{4}x-7
|
asymptotes of y=(3x)/(7x+14)
|
asymptotes\:y=\frac{3x}{7x+14}
|
frequency sin(2x)
|
frequency\:\sin(2x)
|
domain of (x-3)/(x-2)
|
domain\:\frac{x-3}{x-2}
|
slope of 8y-4x=-56
|
slope\:8y-4x=-56
|
cos^4(x)
|
\cos^{4}(x)
|
critical points of f(x)=x^6(x-4)^5
|
critical\:points\:f(x)=x^{6}(x-4)^{5}
|
slope of y= 5/9 x-4
|
slope\:y=\frac{5}{9}x-4
|
critical points of ln(1/(1+e^{-x)})
|
critical\:points\:\ln(\frac{1}{1+e^{-x}})
|
range of f(x)=-x^2
|
range\:f(x)=-x^{2}
|
range of sqrt(12-x^2)
|
range\:\sqrt{12-x^{2}}
|
domain of f(x)=1-e^{-x}*x^2
|
domain\:f(x)=1-e^{-x}\cdot\:x^{2}
|
inverse of f(x)=-(1/5)x+3/5
|
inverse\:f(x)=-(1/5)x+3/5
|
intercepts of x^2+sqrt(x)
|
intercepts\:x^{2}+\sqrt{x}
|
symmetry y=-4x2+0x+4
|
symmetry\:y=-4x2+0x+4
|
symmetry (x^2+x+1)/x
|
symmetry\:\frac{x^{2}+x+1}{x}
|
domain of f(x)=sqrt(-x^2+5x-4)
|
domain\:f(x)=\sqrt{-x^{2}+5x-4}
|
slope intercept of x-2y=-4
|
slope\:intercept\:x-2y=-4
|
domain of (x-2)/(2x^2)
|
domain\:\frac{x-2}{2x^{2}}
|