domain of f(x)=log_{10}(2-x)
|
domain\:f(x)=\log_{10}(2-x)
|
critical points of f(x)=x^4-3x^3+3x^2+1
|
critical\:points\:f(x)=x^{4}-3x^{3}+3x^{2}+1
|
line (0,8),(24.08,0)
|
line\:(0,8),(24.08,0)
|
shift-2+3sin(2x+(pi)/4)
|
shift\:-2+3\sin(2x+\frac{\pi}{4})
|
range of e^{x^2-2x-3}
|
range\:e^{x^{2}-2x-3}
|
monotone intervals f(x)=(-5x+1)^2
|
monotone\:intervals\:f(x)=(-5x+1)^{2}
|
intercepts of f(x)=(2x)/(x^2-9)
|
intercepts\:f(x)=\frac{2x}{x^{2}-9}
|
periodicity of 4cos(1/3 x+(pi)/4)+1
|
periodicity\:4\cos(\frac{1}{3}x+\frac{\pi}{4})+1
|
inverse of-4+ln(x)
|
inverse\:-4+\ln(x)
|
slope of 3x-2y=4
|
slope\:3x-2y=4
|
parity f(x)=sin(x^3)
|
parity\:f(x)=\sin(x^{3})
|
domain of 3/(sqrt(x+4))
|
domain\:\frac{3}{\sqrt{x+4}}
|
slope intercept of-x=-4+y
|
slope\:intercept\:-x=-4+y
|
perpendicular y=-5/2 x+6
|
perpendicular\:y=-\frac{5}{2}x+6
|
domain of f(x)=(x-13)/2
|
domain\:f(x)=\frac{x-13}{2}
|
inverse of f(x)=1+sqrt(1+x)
|
inverse\:f(x)=1+\sqrt{1+x}
|
line 7x+3y=42
|
line\:7x+3y=42
|
domain of log_{4}(x-4)
|
domain\:\log_{4}(x-4)
|
intercepts of y=4^x+3
|
intercepts\:y=4^{x}+3
|
range of f(x)=2sqrt(36-x^2)-7
|
range\:f(x)=2\sqrt{36-x^{2}}-7
|
inverse of (2x)/(x-3)
|
inverse\:\frac{2x}{x-3}
|
inverse of \sqrt[3]{x-5}
|
inverse\:\sqrt[3]{x-5}
|
midpoint (5,9)(-1,9)
|
midpoint\:(5,9)(-1,9)
|
range of y=sin^{-1}(x)
|
range\:y=\sin^{-1}(x)
|
midpoint (12,4)(-8,8)
|
midpoint\:(12,4)(-8,8)
|
range of f(x)=(-3)/(x-2)
|
range\:f(x)=\frac{-3}{x-2}
|
range of f(x)=-tan(x)
|
range\:f(x)=-\tan(x)
|
inverse of f(x)=x^2+4x+7
|
inverse\:f(x)=x^{2}+4x+7
|
periodicity of f(x)= 1/2 cot(4x)
|
periodicity\:f(x)=\frac{1}{2}\cot(4x)
|
extreme points of (x^2-1)/(x+2)
|
extreme\:points\:\frac{x^{2}-1}{x+2}
|
inverse of f(x)=y=2x^4-5
|
inverse\:f(x)=y=2x^{4}-5
|
intercepts of sqrt(x)
|
intercepts\:\sqrt{x}
|
perpendicular y=-5x+2\land (-1,4)
|
perpendicular\:y=-5x+2\land\:(-1,4)
|
asymptotes of f(x)=(2x^2+x-1)/(x^2-1)
|
asymptotes\:f(x)=\frac{2x^{2}+x-1}{x^{2}-1}
|
monotone intervals f(x)=(-x^2-36)/x
|
monotone\:intervals\:f(x)=\frac{-x^{2}-36}{x}
|
range of f(x)= 2/(x^2-2x-3)
|
range\:f(x)=\frac{2}{x^{2}-2x-3}
|
domain of x/(x^2+36)
|
domain\:\frac{x}{x^{2}+36}
|
domain of \sqrt[3]{x-1}
|
domain\:\sqrt[3]{x-1}
|
range of sqrt(4-3x)
|
range\:\sqrt{4-3x}
|
line (8,-9)(-4,15)
|
line\:(8,-9)(-4,15)
|
intercepts of f(x)=y=x^2
|
intercepts\:f(x)=y=x^{2}
|
shift f(x)=2sin(2/3 x-(pi)/6)
|
shift\:f(x)=2\sin(\frac{2}{3}x-\frac{\pi}{6})
|
extreme points of f(x)=(x+4)(x-1)^2
|
extreme\:points\:f(x)=(x+4)(x-1)^{2}
|
domain of f(x)=(x^2-3x)/(x+4)
|
domain\:f(x)=\frac{x^{2}-3x}{x+4}
|
slope intercept of y=3x-5
|
slope\:intercept\:y=3x-5
|
inverse of f(x)= 8/(\sqrt[3]{x+4)}
|
inverse\:f(x)=\frac{8}{\sqrt[3]{x+4}}
|
range of f(x)=y
|
range\:f(x)=y
|
inverse of f(x)=-2x+5
|
inverse\:f(x)=-2x+5
|
inverse of f(x)=(x+2)^2+1
|
inverse\:f(x)=(x+2)^{2}+1
|
slope intercept of-1/3
|
slope\:intercept\:-\frac{1}{3}
|
inverse of f(x)=(x-1)/(2-3x)
|
inverse\:f(x)=\frac{x-1}{2-3x}
|
slope intercept of y-4x=8
|
slope\:intercept\:y-4x=8
|
symmetry y=-2(x-3)^2+5
|
symmetry\:y=-2(x-3)^{2}+5
|
midpoint (-3,4)(0,7)
|
midpoint\:(-3,4)(0,7)
|
critical points of f(x)=(x/(x-6))< 3
|
critical\:points\:f(x)=(\frac{x}{x-6})\lt\:3
|
slope intercept of 5x-8y=-17
|
slope\:intercept\:5x-8y=-17
|
range of f(x)= 3/(sqrt(2x-4))
|
range\:f(x)=\frac{3}{\sqrt{2x-4}}
|
monotone intervals f(x)=x^2-6x
|
monotone\:intervals\:f(x)=x^{2}-6x
|
domain of f(x)=(sqrt(9x+12))/3
|
domain\:f(x)=\frac{\sqrt{9x+12}}{3}
|
asymptotes of f(x)=(4x^2+x-9)/(x^2+1)
|
asymptotes\:f(x)=\frac{4x^{2}+x-9}{x^{2}+1}
|
inverse of f(x)=(2-4x)/(16x-1)
|
inverse\:f(x)=\frac{2-4x}{16x-1}
|
slope intercept of 12x-3y=-3
|
slope\:intercept\:12x-3y=-3
|
domain of f(x)=sqrt((x-4)/(x-2))
|
domain\:f(x)=\sqrt{\frac{x-4}{x-2}}
|
inverse of f(x)=x^3+11
|
inverse\:f(x)=x^{3}+11
|
domain of f(x)=1+(6+x)^{1/2}
|
domain\:f(x)=1+(6+x)^{\frac{1}{2}}
|
domain of (sin(x))/(1+cos(x))
|
domain\:\frac{\sin(x)}{1+\cos(x)}
|
domain of (x-7)^2-8
|
domain\:(x-7)^{2}-8
|
inverse of 4/3 pi x^3
|
inverse\:\frac{4}{3}\pi\:x^{3}
|
intercepts of f(x)=5x^2+2
|
intercepts\:f(x)=5x^{2}+2
|
periodicity of 0.9cos(0.5)(x+(pi)/(10))
|
periodicity\:0.9\cos(0.5)(x+\frac{\pi}{10})
|
monotone intervals x^4-x^2+2x
|
monotone\:intervals\:x^{4}-x^{2}+2x
|
domain of xe^{1/x}
|
domain\:xe^{\frac{1}{x}}
|
asymptotes of f(x)=(x^2-2x-3)/(x+4)
|
asymptotes\:f(x)=\frac{x^{2}-2x-3}{x+4}
|
inverse of y=-3x-9
|
inverse\:y=-3x-9
|
monotone intervals f(x)=7-6e^{-x}
|
monotone\:intervals\:f(x)=7-6e^{-x}
|
parallel y=-4x-8,\at (1,3)
|
parallel\:y=-4x-8,\at\:(1,3)
|
range of f(x)= 1/(sqrt(4-x^2))
|
range\:f(x)=\frac{1}{\sqrt{4-x^{2}}}
|
inverse of f(x)=x
|
inverse\:f(x)=x
|
intercepts of 3x^{2/3}-2x
|
intercepts\:3x^{\frac{2}{3}}-2x
|
inverse of f(x)=-1+x^3
|
inverse\:f(x)=-1+x^{3}
|
inverse of f(x)=sqrt(x)+5
|
inverse\:f(x)=\sqrt{x}+5
|
intercepts of x^2(x-5)(x^2+3)
|
intercepts\:x^{2}(x-5)(x^{2}+3)
|
midpoint (-2,-6)(2,-11)
|
midpoint\:(-2,-6)(2,-11)
|
domain of (x-3)/(2x^2)
|
domain\:\frac{x-3}{2x^{2}}
|
shift y=2sin(6x-pi)
|
shift\:y=2\sin(6x-\pi)
|
symmetry f(x)=-5(x-1)2+4
|
symmetry\:f(x)=-5(x-1)2+4
|
inverse of f(x)= 4/3 x+1
|
inverse\:f(x)=\frac{4}{3}x+1
|
inverse of f(x)=((x+4))/(x-2)
|
inverse\:f(x)=\frac{(x+4)}{x-2}
|
extreme points of f(x)=2x^3-24x-2
|
extreme\:points\:f(x)=2x^{3}-24x-2
|
shift f(x)=-3sin(x-(pi)/4)+2
|
shift\:f(x)=-3\sin(x-\frac{\pi}{4})+2
|
symmetry f(x)=2(x-4)^2+3
|
symmetry\:f(x)=2(x-4)^{2}+3
|
inverse of f(x)= x/7
|
inverse\:f(x)=\frac{x}{7}
|
domain of sqrt(9-x)
|
domain\:\sqrt{9-x}
|
domain of f(x)=(5x+20)/(x^2-16)
|
domain\:f(x)=\frac{5x+20}{x^{2}-16}
|
asymptotes of f(x)=(x-3)/(x^2+1)
|
asymptotes\:f(x)=\frac{x-3}{x^{2}+1}
|
line (-3,1)(1,-2)
|
line\:(-3,1)(1,-2)
|
line (2,0)(0,3)
|
line\:(2,0)(0,3)
|
range of x^3+3x^2+2x+1
|
range\:x^{3}+3x^{2}+2x+1
|
inverse of f(x)=(2x+5)/6
|
inverse\:f(x)=\frac{2x+5}{6}
|
domain of sqrt((-x^2+16)(x+3))
|
domain\:\sqrt{(-x^{2}+16)(x+3)}
|